Bullivant Austin, Lozano-Huntelman Natalie, Tabibian Kevin, Leung Vivien, Armstrong Dylan, Dudley Henry, Savage Van M, Rodríguez-Verdugo Alejandra, Yeh Pamela J
Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA.
Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA.
bioRxiv. 2024 Feb 29:2024.02.27.582334. doi: 10.1101/2024.02.27.582334.
Exposure to both antibiotics and temperature changes can induce similar physiological responses in bacteria. Thus, changes in growth temperature may affect antibiotic resistance. Previous studies have found that evolution under antibiotic stress causes shifts in the optimal growth temperature of bacteria. However, little is known about how evolution under thermal stress affects antibiotic resistance. We examined 100+ heat-evolved strains of that evolved under thermal stress. We asked whether evolution under thermal stress affects optimal growth temperature, if there are any correlations between evolving in high temperatures and antibiotic resistance, and if these strains' antibiotic efficacy changes depending on the local environment's temperature. We found that: (1) surprisingly, most of the heat-evolved strains displayed a decrease in optimal growth temperature and overall growth relative to the ancestor strain, (2) there were complex patterns of changes in antibiotic resistance when comparing the heat-evolved strains to the ancestor strain, and (3) there were few significant correlations among changes in antibiotic resistance, optimal growth temperature, and overall growth.
同时接触抗生素和温度变化会在细菌中引发相似的生理反应。因此,生长温度的变化可能会影响抗生素耐药性。先前的研究发现,在抗生素压力下的进化会导致细菌的最佳生长温度发生变化。然而,对于热应激下的进化如何影响抗生素耐药性,人们知之甚少。我们研究了100多个在热应激下进化的热进化菌株。我们探讨了热应激下的进化是否会影响最佳生长温度,在高温下进化与抗生素耐药性之间是否存在任何相关性,以及这些菌株的抗生素疗效是否会根据当地环境温度而变化。我们发现:(1)令人惊讶的是,与祖先菌株相比,大多数热进化菌株的最佳生长温度和总体生长都有所下降;(2)将热进化菌株与祖先菌株进行比较时,抗生素耐药性存在复杂的变化模式;(3)抗生素耐药性变化、最佳生长温度和总体生长之间几乎没有显著相关性。