Sung Sheng-Feng, Hsieh Cheng-Yang, Lin Huey-Juan, Chen Yu-Wei, Yang Yea-Huei Kao, Li Chung-Yi
Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan.
Department of Neurology, Tainan Sin Lau Hospital, Tainan, Taiwan.
Int J Cardiol. 2016 Jul 15;215:277-82. doi: 10.1016/j.ijcard.2016.04.069. Epub 2016 Apr 14.
Stroke patients have a high risk for recurrence, which is positively correlated with the number of risk factors. The assessment of risk factors is essential in both stroke outcomes research and the surveillance of stroke burden. However, methods for assessment of risk factors using claims data are not well developed.
We enrolled 6469 patients with acute ischemic stroke, transient ischemic attack, or intracerebral hemorrhage from hospital-based stroke registries, which were linked with Taiwan's National Health Insurance (NHI) claims database. We developed algorithms using diagnosis codes and prescription data to identify stroke risk factors including hypertension, diabetes, hyperlipidemia, atrial fibrillation (AF), and coronary artery disease (CAD) in the claims database using registry data as reference standard. We estimated the kappa statistics to quantify the agreement of information on the risk factors between claims and registry data.
The prevalence of risk factors in the registries was hypertension 77.0%, diabetes 39.1%, hyperlipidemia 55.6%, AF 10.1%, and CAD 10.9%. The highest kappa statistics were 0.552 (95% confidence interval 0.528-0.577) for hypertension, 0.861 (0.836-0.885) for diabetes, 0.572 (0.549-0.596) for hyperlipidemia, 0.687 (0.663-0.712) for AF, and 0.480 (0.455-0.504) for CAD. Algorithms based on diagnosis codes alone could achieve moderate to high agreement in identifying the selected risk factors, whereas prescription data helped improve identification of hyperlipidemia.
We tested various claims-based algorithms to ascertain important risk factors in stroke patients. These validated algorithms are useful for assessing stroke risk factors in future studies using Taiwan's NHI claims data.
中风患者复发风险高,且与风险因素数量呈正相关。风险因素评估在中风结局研究和中风负担监测中均至关重要。然而,利用理赔数据评估风险因素的方法尚未充分发展。
我们从医院中风登记处纳入了6469例急性缺血性中风、短暂性脑缺血发作或脑出血患者,这些登记处与台湾全民健康保险(NHI)理赔数据库相关联。我们利用诊断编码和处方数据开发算法,以登记数据作为参考标准,在理赔数据库中识别包括高血压、糖尿病、高脂血症、心房颤动(AF)和冠状动脉疾病(CAD)在内的中风风险因素。我们估计kappa统计量以量化理赔数据和登记数据之间风险因素信息的一致性。
登记处中风险因素的患病率分别为高血压77.0%、糖尿病39.1%、高脂血症55.6%、AF 10.1%和CAD 10.9%。高血压的kappa统计量最高,为0.552(95%置信区间0.528 - 0.577),糖尿病为0.861(0.836 - 0.885),高脂血症为0.572(0.549 - 0.596),AF为0.687(0.663 - 0.712),CAD为0.480(0.455 - 0.504)。仅基于诊断编码的算法在识别选定风险因素方面可达到中度至高一致性,而处方数据有助于改善高脂血症的识别。
我们测试了各种基于理赔的算法以确定中风患者的重要风险因素。这些经过验证的算法可用于未来利用台湾NHI理赔数据的研究中评估中风风险因素。