Suppr超能文献

重叠社区揭示了静息和任务状态下大规模脑网络中的丰富结构。

Overlapping communities reveal rich structure in large-scale brain networks during rest and task conditions.

作者信息

Najafi Mahshid, McMenamin Brenton W, Simon Jonathan Z, Pessoa Luiz

机构信息

Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA; Department of Psychology, University of Maryland, College Park, MD 20742, USA.

Department of Psychology, University of Maryland, College Park, MD 20742, USA.

出版信息

Neuroimage. 2016 Jul 15;135:92-106. doi: 10.1016/j.neuroimage.2016.04.054. Epub 2016 Apr 26.

Abstract

Large-scale analysis of functional MRI data has revealed that brain regions can be grouped into stable "networks" or communities. In many instances, the communities are characterized as relatively disjoint. Although recent work indicates that brain regions may participate in multiple communities (for example, hub regions), the extent of community overlap is poorly understood. To address these issues, here we investigated large-scale brain networks based on "rest" and task human functional MRI data by employing a mixed-membership Bayesian model that allows each brain region to belong to all communities simultaneously with varying membership strengths. The approach allowed us to 1) compare the structure of disjoint and overlapping communities; 2) determine the relationship between functional diversity (how diverse is a region's functional activation repertoire) and membership diversity (how diverse is a region's affiliation to communities); 3) characterize overlapping community structure; 4) characterize the degree of non-modularity in brain networks; 5) study the distribution of "bridges", including bottleneck and hub bridges. Our findings revealed the existence of dense community overlap that was not limited to "special" hubs. Furthermore, the findings revealed important differences between community organization during rest and during specific task states. Overall, we suggest that dense overlapping communities are well suited to capture the flexible and task dependent mapping between brain regions and their functions.

摘要

对功能磁共振成像数据的大规模分析表明,脑区可被归类为稳定的“网络”或群落。在许多情况下,这些群落的特征是相对不相交的。尽管最近的研究表明脑区可能参与多个群落(例如,枢纽区域),但群落重叠的程度仍知之甚少。为了解决这些问题,我们在此通过采用混合成员贝叶斯模型,基于“静息”和任务态人类功能磁共振成像数据研究大规模脑网络,该模型允许每个脑区以不同的成员强度同时属于所有群落。该方法使我们能够:1)比较不相交和重叠群落的结构;2)确定功能多样性(一个区域的功能激活模式有多多样)和成员多样性(一个区域与群落的隶属关系有多多样)之间的关系;3)描述重叠群落结构;4)描述脑网络中的非模块化程度;5)研究“桥梁”的分布,包括瓶颈桥和枢纽桥。我们的研究结果揭示了密集的群落重叠的存在,这种重叠并不局限于“特殊”枢纽。此外,研究结果还揭示了静息状态和特定任务状态下群落组织之间的重要差异。总体而言,我们认为密集的重叠群落非常适合捕捉脑区与其功能之间灵活且依赖任务的映射关系。

相似文献

3
A Functional Cartography of Cognitive Systems.认知系统的功能图谱
PLoS Comput Biol. 2015 Dec 2;11(12):e1004533. doi: 10.1371/journal.pcbi.1004533. eCollection 2015 Dec.
4
Age-dependent changes in task-based modular organization of the human brain.人类大脑基于任务的模块化组织随年龄的变化
Neuroimage. 2017 Feb 1;146:741-762. doi: 10.1016/j.neuroimage.2016.09.001. Epub 2016 Sep 3.
6
Scale-free brain functional networks.无标度脑功能网络。
Phys Rev Lett. 2005 Jan 14;94(1):018102. doi: 10.1103/PhysRevLett.94.018102. Epub 2005 Jan 6.
8
Integration versus segregation in functional brain networks.功能脑网络中的整合与分离。
IEEE Trans Biomed Eng. 2011 Oct;58(10):3004-7. doi: 10.1109/TBME.2011.2161084. Epub 2011 Jun 30.
9
Stability of Network Communities as a Function of Task Complexity.网络社区的稳定性与任务复杂性的关系
J Cogn Neurosci. 2016 Dec;28(12):2030-2043. doi: 10.1162/jocn_a_01026. Epub 2016 Aug 30.

引用本文的文献

4
Connectivity analyses for task-based fMRI.基于任务的 fMRI 的连通性分析。
Phys Life Rev. 2024 Jul;49:139-156. doi: 10.1016/j.plrev.2024.04.012. Epub 2024 Apr 30.
8
Living on the edge: network neuroscience beyond nodes.边缘生活:节点之外的网络神经科学。
Trends Cogn Sci. 2023 Nov;27(11):1068-1084. doi: 10.1016/j.tics.2023.08.009. Epub 2023 Sep 14.
9

本文引用的文献

3
The strength of weak connections in the macaque cortico-cortical network.猕猴皮质-皮质网络中弱连接的强度
Brain Struct Funct. 2015 Sep;220(5):2939-51. doi: 10.1007/s00429-014-0836-3. Epub 2014 Jul 18.
5
Understanding brain networks and brain organization.理解脑网络与脑组织。
Phys Life Rev. 2014 Sep;11(3):400-35. doi: 10.1016/j.plrev.2014.03.005. Epub 2014 Apr 18.
6
Revisiting the role of persistent neural activity during working memory.重新探讨工作记忆期间持续神经活动的作用。
Trends Cogn Sci. 2014 Feb;18(2):82-9. doi: 10.1016/j.tics.2013.12.001. Epub 2014 Jan 14.
10
Evidence for hubs in human functional brain networks.人类功能脑网络中的枢纽证据。
Neuron. 2013 Aug 21;79(4):798-813. doi: 10.1016/j.neuron.2013.07.035.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验