Putignani Lorenza, Dallapiccola Bruno
Units of Parasitology and Human Microbiome, Bambino Gesù Children's Hospital and Research Institute, Piazza Sant'Onofrio 4, 00165 Rome, Italy.
Scientific Directorate, Bambino Gesù Children's Hospital and Research Institute, Piazza Sant'Onofrio 4, 00165 Rome, Italy.
J Proteomics. 2016 Sep 16;147:3-20. doi: 10.1016/j.jprot.2016.04.033. Epub 2016 Apr 26.
The functional complexity of human gut microbiota and its relationship with host physiology and environmental modulating factors, offers the opportunity to investigate (i) the host and microbiota role in organism-environment relationship; (ii) the individual functional diversity and response to environmental stimuli (exposome); (iii) the host genome and microbiota metagenomes' modifications by diet-mediated epigenomic controls (nutriepigenomics); and (iv) the genotype-phenotype "trajectories" under physiological and disease constraints. Systems biology-based approaches aim at integrating biological data at cellular, tissue and organ organization levels, using computational modeling to interpret diseases' physiopathological mechanisms (i.e., onset and progression). Proteomics improves the existing gene models by profiling molecular phenotypes at protein abundance level, by analyzing post-translational modifications and protein-protein interactions and providing specific pathway information, hence contributing to functional molecular networks. Transcriptomics and metabolomics may determine host ad microbiota changes induced by food ingredients at molecular level, complementing functional genomics and proteomics data. Since foodomics is an -omic wide methodology may feed back all integrative data to foster the omics-based systems medicine field. Hence, coupled to ecological genomics of gut microbial communities, foodomics may highlight health benefits from nutrients, dissecting diet-induced gut microbiota eubiosis mechanisms and significantly contributing to understand and prevent complex disease phenotypes.
Besides transcriptomics and proteomics there is a growing interest in applying metabolic profiling to food science for the development of functional foods. Indeed, one of the biggest challenges of modern nutrition is to propose a healthy diet to populations worldwide, intrinsically respecting the high inter-individual variability, driven by complex host/nutrients/microbiota/environment interactions. Therefore, metabolic profiling can assist at various levels for the development of functional foods, starting from screening for food composition to identification of new biomarkers to trace food intake. This current approach can support diet intervention strategies, epidemiological studies, and controlling of metabolic disorders worldwide spreading, hence ensuring healthy aging. With high-throughput molecular technologies driving foodomics, studying bidirectional interactions of host-microbial co-metabolism, innate immune development, dysfunctional nutrient absorption and processing, complex signaling pathways involved in nutritional metabolism, is now likely. In all cases, as microbiome pipeline efforts continue, it is possible that enhanced standardized protocols can be developed, which may lead to new testable biological and clinical hypotheses. This Review provides a comprehensive update on the current state-of-the-art of the integrated -omics route in food, microbiota and host co-metabolism studies, which may revolutionize the design of new dietary intervention strategies.
人类肠道微生物群的功能复杂性及其与宿主生理和环境调节因素的关系,为研究以下方面提供了机会:(i)宿主和微生物群在机体与环境关系中的作用;(ii)个体功能多样性以及对环境刺激(暴露组)的反应;(iii)饮食介导的表观基因组控制(营养表观基因组学)对宿主基因组和微生物群宏基因组的修饰;以及(iv)生理和疾病限制下的基因型 - 表型“轨迹”。基于系统生物学的方法旨在整合细胞、组织和器官组织水平的生物学数据,利用计算模型来解释疾病的生理病理机制(即发病和进展)。蛋白质组学通过在蛋白质丰度水平分析分子表型、分析翻译后修饰和蛋白质 - 蛋白质相互作用并提供特定的信号通路信息,改进了现有的基因模型,从而有助于构建功能分子网络。转录组学和代谢组学可以在分子水平确定食物成分引起的宿主和微生物群变化,补充功能基因组学和蛋白质组学数据。由于食物组学是一种全组学方法,可以反馈所有整合数据以促进基于组学的系统医学领域的发展。因此,与肠道微生物群落的生态基因组学相结合,食物组学可以突出营养物质的健康益处,剖析饮食诱导的肠道微生物群共生机制,并为理解和预防复杂疾病表型做出重大贡献。
除了转录组学和蛋白质组学之外,将代谢谱分析应用于食品科学以开发功能性食品的兴趣也在日益增加。事实上,现代营养面临的最大挑战之一是为全球人群提出健康饮食方案,同时本质上尊重由复杂的宿主/营养物质/微生物群/环境相互作用驱动的高度个体间变异性。因此,代谢谱分析可以在从筛选食物成分到识别新的生物标志物以追踪食物摄入量等各个层面协助功能性食品的开发。这种当前的方法可以支持饮食干预策略、流行病学研究以及控制全球范围内蔓延的代谢紊乱,从而确保健康老龄化。随着高通量分子技术推动食物组学发展,现在有可能研究宿主 - 微生物共代谢、先天免疫发育、营养物质吸收和加工功能失调以及营养代谢中涉及的复杂信号通路之间的双向相互作用。在所有情况下,随着微生物组研究工作的持续进行,有可能开发出更完善的标准化方案,这可能会导致新的可测试的生物学和临床假设。本综述全面更新了食品、微生物群和宿主共代谢研究中当前的综合组学路线的最新进展,这可能会彻底改变新饮食干预策略的设计。