Nano-Electro-Chemistry Group, ITODYS, UMR 7086 CNRS, Université Paris Diderot, Sorbonne Paris Cité , 15 rue Jean-Antoine de Baïf, 75205 Paris, France.
ACS Appl Mater Interfaces. 2016 Oct 26;8(42):28316-28324. doi: 10.1021/acsami.6b02107. Epub 2016 May 2.
Redox-active poly(ionic liquid) poly(3-(2-methacryloyloxy ethyl)-1-(N-(ferrocenylmethyl) imidazolium bis(trifluoromethylsulfonyl)imide deposited onto electrode surfaces has been prepared using surface-initiated atom transfer radical polymerization SI-ATRP. The process starts by electrochemical immobilization of initiator layer, and then methacrylate monomer carrying ferrocene and imidazolium units is polymerized in ionic liquid media via SI-ATRP process. The surfaces analyses of the polymer exhibit a well-defined polymer brushlike structure and confirm the presence of ferrocene and ionic moieties within the film. Furthermore, the electrochemical investigations of poly(redox-active ionic liquid) in different media demonstrate that the electron transfer is not restricted by the rate of counterion migration into/out of the polymer. The attractive electrochemical performance of these materials is further demonstrated by performing electrochemical measurement, of poly(ferrocene ionic liquid), in solvent-free electrolyte. The facile synthesis of such highly ordered electroactive materials based ionic liquid could be useful for the fabrication of nanostructured electrode suitable for performing electrochemistry in solvent free electrolyte. We also demonstrate possible applications of the poly(FcIL) as electrochemically reversible surface wettability system and as electrochemical sensor for the catalytic activity toward the oxidation of tyrosine.
具有氧化还原活性的聚(离子液体)聚(3-(2-(甲基丙烯酰氧基)乙基)-1-(N-(二茂铁基甲基)咪唑𬭩双(三氟甲烷磺酰基)亚胺)已通过表面引发原子转移自由基聚合 SI-ATRP 制备并沉积在电极表面上。该过程首先通过电化学固定化引发剂层,然后通过 SI-ATRP 过程在离子液体介质中聚合带有二茂铁和咪唑单元的甲基丙烯酸酯单体。聚合物的表面分析显示出定义明确的聚合物刷状结构,并确认在膜内存在二茂铁和离子部分。此外,在不同介质中对聚(氧化还原活性离子液体)的电化学研究表明,电子转移不受反离子进入/离开聚合物的速率限制。这些材料的吸引人的电化学性能通过在无溶剂电解质中进行聚(二茂铁离子液体)的电化学测量进一步证明。基于离子液体的这种高度有序的电活性材料的简便合成可用于制造适用于无溶剂电解质中电化学的纳米结构化电极。我们还展示了聚(FcIL)作为电化学可逆润湿性系统和作为对酪氨酸氧化的催化活性的电化学传感器的可能应用。