Suppr超能文献

用于布里渊光时域分析(BOTDA)传感器系统的基于人工神经网络的信号处理

Signal processing using artificial neural network for BOTDA sensor system.

作者信息

Azad Abul Kalam, Wang Liang, Guo Nan, Tam Hwa-Yaw, Lu Chao

出版信息

Opt Express. 2016 Mar 21;24(6):6769-82. doi: 10.1364/OE.24.006769.

Abstract

We experimentally demonstrate the use of artificial neural network (ANN) to process sensing signals obtained from Brillouin optical time domain analyzer (BOTDA). The distributed temperature information is extracted directly from the local Brillouin gain spectra (BGSs) along the fiber under test without the process of determination of Brillouin frequency shift (BFS) and hence conversion from BFS to temperature. Unlike our previous work for short sensing distance where ANN is trained by measured BGSs, here we employ ideal BGSs with different linewidths to train the ANN in order to take the linewidth variation due to different conditions from the training and testing phases into account, making it feasible for long distance sensing. Moreover, the performance of ANN is compared with other two techniques, Lorentzian curve fitting and cross-correlation method, and our results show that ANN has higher accuracy and larger tolerance to measurement error, especially at large frequency scanning step. We also show that the temperature extraction from BOTDA measurements employing ANN is significantly faster than the other two approaches. Hence ANN can be an excellent alternative tool to process BGSs measured by BOTDA and obtain temperature distribution along the fiber, especially when large frequency scanning step is adopted to significantly reduce the measurement time but without sacrifice of sensing accuracy.

摘要

我们通过实验证明了使用人工神经网络(ANN)来处理从布里渊光时域分析仪(BOTDA)获得的传感信号。分布式温度信息是直接从被测光纤沿线的局部布里渊增益谱(BGS)中提取的,无需确定布里渊频移(BFS),因此也无需从BFS转换为温度。与我们之前针对短传感距离的工作不同,在之前的工作中ANN是通过测量的BGS进行训练的,而在此我们使用具有不同线宽的理想BGS来训练ANN,以便将训练和测试阶段因不同条件引起的线宽变化考虑在内,从而使长距离传感成为可能。此外,将ANN的性能与其他两种技术(洛伦兹曲线拟合和互相关方法)进行了比较,我们的结果表明ANN具有更高的准确性和对测量误差的更大容忍度,尤其是在大频率扫描步长时。我们还表明,采用ANN从BOTDA测量中提取温度的速度明显快于其他两种方法。因此,ANN可以成为处理由BOTDA测量的BGS并获得沿光纤温度分布的出色替代工具,特别是当采用大频率扫描步长以显著减少测量时间但又不牺牲传感精度时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验