Bundesanstalt für Materialforschung und-Prüfung, Unter den Eichen 87, 12205 Berlin, Germany.
Sensors (Basel). 2023 Jul 6;23(13):6187. doi: 10.3390/s23136187.
This paper presents reported machine learning approaches in the field of Brillouin distributed fiber optic sensors (DFOSs). The increasing popularity of Brillouin DFOSs stems from their capability to continuously monitor temperature and strain along kilometer-long optical fibers, rendering them attractive for industrial applications, such as the structural health monitoring of large civil infrastructures and pipelines. In recent years, machine learning has been integrated into the Brillouin DFOS signal processing, resulting in fast and enhanced temperature, strain, and humidity measurements without increasing the system's cost. Machine learning has also contributed to enhanced spatial resolution in Brillouin optical time domain analysis (BOTDA) systems and shorter measurement times in Brillouin optical frequency domain analysis (BOFDA) systems. This paper provides an overview of the applied machine learning methodologies in Brillouin DFOSs, as well as future perspectives in this area.
本文介绍了在布里渊分布式光纤传感器(DFOS)领域中报告的机器学习方法。布里渊 DFOS 的日益普及源于其能够连续监测长达数公里的光纤中的温度和应变,因此它们在工业应用中具有吸引力,例如大型民用基础设施和管道的结构健康监测。近年来,机器学习已被集成到布里渊 DFOS 信号处理中,无需增加系统成本即可实现快速增强的温度、应变和湿度测量。机器学习还提高了布里渊光时域分析(BOTDA)系统的空间分辨率,并缩短了布里渊光频域分析(BOFDA)系统的测量时间。本文概述了布里渊 DFOS 中应用的机器学习方法以及该领域的未来展望。