Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB) , Largo Barsanti e Matteucci, 53, Naples 80125, Italy.
Interdisciplinary Research Center on Biomaterials (CRIB), University of Naples Federico II , Naples 80125, Italy.
ACS Appl Mater Interfaces. 2016 May 18;8(19):12075-81. doi: 10.1021/acsami.6b04128. Epub 2016 May 9.
Nowadays, microfluidic channels of a few tens of micrometers are required and widely used in many fields, especially for surface-processing applications and miniaturization of biological assays. Herein, we selected micromilling as a low-cost technology and proposed an approach capable of overcoming its limitations; in fact, microstructures below 20-30 μm in depth are difficult to obtain, and the manufacturing error is rather high, as it is inversely proportional to the depth. Indeed, the proposed method uses a confined dehydration process of a patterned gelatin substrate fabricated via replica molding onto a micromilled poly(methyl methacrylate) substrate to produce a gelatin master with demonstrated final micrometric features down to 3 μm for the channel depth and, in specific configurations, down to 5 μm for the channel width. Finally, we demonstrated the ability to flux liquids in miniaturized microfluidic devices and fabricated and tested-as an example-micrometric microstructures arrays connected via microchannels for biological assays.
如今,需要并广泛使用几十微米的微流道,特别是在表面处理应用和生物分析的小型化方面。在此,我们选择微铣削作为一种低成本技术,并提出了一种能够克服其局限性的方法;事实上,深度低于 20-30μm 的微结构很难获得,而且制造误差相当高,因为它与深度成反比。实际上,所提出的方法使用通过复制模塑到微铣削的聚甲基丙烯酸甲酯基底上制造的图案化明胶基底的受限去水过程,以产生具有证明的最终微尺度特征的明胶主模,对于通道深度低至 3μm,并且在特定配置中,通道宽度低至 5μm。最后,我们证明了在小型化微流控装置中输送液体的能力,并制造和测试了作为示例的通过微通道连接的用于生物分析的微尺度微结构阵列。