Sudou Norihiro, Garcés-Vásconez Andrés, López-Latorre María A, Taira Masanori, Del Pino Eugenia M
Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan; Department of Anatomy, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan;
Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito 170517, Ecuador.
Proc Natl Acad Sci U S A. 2016 May 17;113(20):5628-33. doi: 10.1073/pnas.1605547113. Epub 2016 May 2.
Protein expression of the transcription factor genes mix1 and vegt characterized the presumptive endoderm in embryos of the frogs Engystomops randi, Epipedobates machalilla, Gastrotheca riobambae, and Eleutherodactylus coqui, as in Xenopus laevis embryos. Protein VegT was detected in the animal hemisphere of the early blastula in all frogs, and only the animal pole was VegT-negative. This finding stimulated a vegt mRNA analysis in X. laevis eggs and embryos. vegt mRNA was detected in the animal region of X. laevis eggs and early embryos, in agreement with the VegT localization observed in the analyzed frogs. Moreover, a dorso-animal relocalization of vegt mRNA occurred in the egg at fertilization. Thus, the comparative analysis indicated that vegt may participate in dorsal development besides its known roles in endoderm development, and germ-layer specification. Zygotic vegt (zvegt) mRNA was detected as a minor isoform besides the major maternal (mvegt) isoform of the X. laevis egg. In addition, α-amanitin-insensitive vegt transcripts were detected around vegetal nuclei of the blastula. Thus, accumulation of vegt mRNA around vegetal nuclei was caused by relocalization rather than new mRNA synthesis. The localization of vegt mRNA around vegetal nuclei may contribute to the identity of vegetal blastomeres. These and previously reportedly localization features of vegt mRNA and protein derive from the master role of vegt in the development of frogs. The comparative analysis indicated that the strategies for endoderm, and dorsal specification, involving vegt and mix1, have been evolutionary conserved in frogs.
转录因子基因mix1和vegt的蛋白质表达表征了兰迪姬蛙(Engystomops randi)、马氏斑腿树蛙(Epipedobates machalilla)、里奥班巴胃育蛙(Gastrotheca riobambae)和寇氏雨蛙(Eleutherodactylus coqui)胚胎中的预定内胚层,就像在非洲爪蟾(Xenopus laevis)胚胎中一样。在所有蛙类的早期囊胚动物半球中都检测到了蛋白质VegT,只有动物极是VegT阴性。这一发现促使对非洲爪蟾卵和胚胎进行vegt mRNA分析。在非洲爪蟾卵和早期胚胎的动物区域检测到了vegt mRNA,这与在所分析的蛙类中观察到的VegT定位一致。此外,在受精时卵中vegt mRNA发生了背侧 - 动物区域的重新定位。因此,比较分析表明vegt除了在已知的内胚层发育和胚层特化作用外,可能还参与背侧发育。除了非洲爪蟾卵的主要母本(mvegt)异构体之外,还检测到了合子vegt(zvegt)mRNA的次要异构体。此外,在囊胚植物极细胞核周围检测到了对α - 鹅膏蕈碱不敏感的vegt转录本。因此,vegt mRNA在植物极细胞核周围的积累是由重新定位引起的,而不是新的mRNA合成。vegt mRNA在植物极细胞核周围的定位可能有助于植物极卵裂球的特性形成。vegt mRNA和蛋白质的这些以及先前报道的定位特征源于vegt在蛙类发育中的主导作用。比较分析表明,涉及vegt和mix1的内胚层和背侧特化策略在蛙类中是进化保守的。