Suppr超能文献

标度律预测全球微生物多样性。

Scaling laws predict global microbial diversity.

作者信息

Locey Kenneth J, Lennon Jay T

机构信息

Department of Biology, Indiana University, Bloomington, IN 47405

出版信息

Proc Natl Acad Sci U S A. 2016 May 24;113(21):5970-5. doi: 10.1073/pnas.1521291113. Epub 2016 May 2.

Abstract

Scaling laws underpin unifying theories of biodiversity and are among the most predictively powerful relationships in biology. However, scaling laws developed for plants and animals often go untested or fail to hold for microorganisms. As a result, it is unclear whether scaling laws of biodiversity will span evolutionarily distant domains of life that encompass all modes of metabolism and scales of abundance. Using a global-scale compilation of ∼35,000 sites and ∼5.6⋅10(6) species, including the largest ever inventory of high-throughput molecular data and one of the largest compilations of plant and animal community data, we show similar rates of scaling in commonness and rarity across microorganisms and macroscopic plants and animals. We document a universal dominance scaling law that holds across 30 orders of magnitude, an unprecedented expanse that predicts the abundance of dominant ocean bacteria. In combining this scaling law with the lognormal model of biodiversity, we predict that Earth is home to upward of 1 trillion (10(12)) microbial species. Microbial biodiversity seems greater than ever anticipated yet predictable from the smallest to the largest microbiome.

摘要

标度律是生物多样性统一理论的基础,也是生物学中预测能力最强的关系之一。然而,为植物和动物制定的标度律往往未经检验,或者不适用于微生物。因此,目前尚不清楚生物多样性的标度律是否适用于涵盖所有代谢模式和丰度规模的进化距离遥远的生命领域。我们利用全球范围内约35000个位点和约560万个物种的汇编数据,包括有史以来最大规模的高通量分子数据清单和最大规模的动植物群落数据汇编之一,表明微生物与宏观植物和动物在常见度和稀有度方面具有相似的标度率。我们记录了一个适用于30个数量级的通用优势标度律,这是一个前所未有的范围,可预测优势海洋细菌的丰度。将这个标度律与生物多样性的对数正态模型相结合,我们预测地球上有超过1万亿(10¹²)种微生物。微生物多样性似乎比以往任何时候预期的都要大,但从最小到最大的微生物群落来看却是可预测的。

相似文献

1
Scaling laws predict global microbial diversity.
Proc Natl Acad Sci U S A. 2016 May 24;113(21):5970-5. doi: 10.1073/pnas.1521291113. Epub 2016 May 2.
2
A macroecological theory of microbial biodiversity.
Nat Ecol Evol. 2017 Apr 3;1(5):107. doi: 10.1038/s41559-017-0107.
3
More support for Earth's massive microbiome.
Biol Direct. 2020 Mar 4;15(1):5. doi: 10.1186/s13062-020-00261-8.
4
[Scaling laws of altitudinal pattern of soil fauna diversity in Dongling Mountain, Beijing, China].
Ying Yong Sheng Tai Xue Bao. 2021 Dec;32(12):4272-4278. doi: 10.13287/j.1001-9332.202112.030.
5
Commonness and rarity in the marine biosphere.
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8524-9. doi: 10.1073/pnas.1406664111. Epub 2014 May 27.
6
New Allometric Scaling Laws Revealed for Microorganisms.
Trends Ecol Evol. 2017 Jun;32(6):400-402. doi: 10.1016/j.tree.2017.02.017. Epub 2017 Mar 9.
7
Macroecology to Unite All Life, Large and Small.
Trends Ecol Evol. 2018 Oct;33(10):731-744. doi: 10.1016/j.tree.2018.08.005. Epub 2018 Sep 9.
8
The commonness of rarity: Global and future distribution of rarity across land plants.
Sci Adv. 2019 Nov 27;5(11):eaaz0414. doi: 10.1126/sciadv.aaz0414. eCollection 2019 Nov.
9
Unifying spatial scaling laws of biodiversity and ecosystem stability.
Science. 2025 Mar 21;387(6740):eadl2373. doi: 10.1126/science.adl2373.
10
A unified model explains commonness and rarity on coral reefs.
Ecol Lett. 2017 Apr;20(4):477-486. doi: 10.1111/ele.12751. Epub 2017 Mar 2.

引用本文的文献

1
Deciphering enzymatic potential in metagenomic reads through DNA language models.
Nucleic Acids Res. 2025 Aug 27;53(16). doi: 10.1093/nar/gkaf836.
6
ganon2: up-to-date and scalable metagenomics analysis.
NAR Genom Bioinform. 2025 Jul 17;7(3):lqaf094. doi: 10.1093/nargab/lqaf094. eCollection 2025 Sep.
7
The tumor microbiome in cancer progression: mechanisms and therapeutic potential.
Mol Cancer. 2025 Jul 15;24(1):195. doi: 10.1186/s12943-025-02403-w.
8
Microbes are life, the biological core of and .
Microlife. 2025 Jun 28;6:uqaf012. doi: 10.1093/femsml/uqaf012. eCollection 2025.

本文引用的文献

1
A new view of the tree of life.
Nat Microbiol. 2016 Apr 11;1:16048. doi: 10.1038/nmicrobiol.2016.48.
2
A Process-Independent Explanation for the General Form of Taylor's Law.
Am Nat. 2015 Aug;186(2):E51-60. doi: 10.1086/682050. Epub 2015 Jun 4.
3
Unusual biology across a group comprising more than 15% of domain Bacteria.
Nature. 2015 Jul 9;523(7559):208-11. doi: 10.1038/nature14486. Epub 2015 Jun 15.
4
New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods.
Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):7519-23. doi: 10.1073/pnas.1502408112. Epub 2015 Jun 1.
5
Ocean plankton. Structure and function of the global ocean microbiome.
Science. 2015 May 22;348(6237):1261359. doi: 10.1126/science.1261359.
6
The Earth Microbiome project: successes and aspirations.
BMC Biol. 2014 Aug 22;12:69. doi: 10.1186/s12915-014-0069-1.
7
How species richness and total abundance constrain the distribution of abundance.
Ecol Lett. 2013 Sep;16(9):1177-85. doi: 10.1111/ele.12154. Epub 2013 Jul 15.
8
Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus.
Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9824-9. doi: 10.1073/pnas.1307701110. Epub 2013 May 23.
9
Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes.
ISME J. 2013 Jul;7(7):1310-21. doi: 10.1038/ismej.2013.30. Epub 2013 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验