Wimberger Sandro
Dipartimento di Fisica e Scienze della Terra, Università di Parma, Via G.P. Usberti 7/a, 43124 Parma, Italy INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, Italy Institut für Theoretische Physik, Philosophenweg 12, Universität Heidelberg, 69120 Heidelberg, Germany
Philos Trans A Math Phys Eng Sci. 2016 Jun 13;374(2069). doi: 10.1098/rsta.2015.0153.
We revisit fidelity as a measure for the stability and the complexity of the quantum motion of single-and many-body systems. Within the context of cold atoms, we present an overview of applications of two fidelities, which we call static and dynamical fidelity, respectively. The static fidelity applies to quantum problems which can be diagonalized since it is defined via the eigenfunctions. In particular, we show that the static fidelity is a highly effective practical detector of avoided crossings characterizing the complexity of the systems and their evolutions. The dynamical fidelity is defined via the time-dependent wave functions. Focusing on the quantum kicked rotor system, we highlight a few practical applications of fidelity measurements in order to better understand the large variety of dynamical regimes of this paradigm of a low-dimensional system with mixed regular-chaotic phase space.
我们重新审视保真度,将其作为单粒子和多粒子系统量子运动稳定性和复杂性的一种度量。在冷原子的背景下,我们概述了两种保真度的应用,我们分别称之为静态保真度和动态保真度。静态保真度适用于可对角化的量子问题,因为它是通过本征函数定义的。特别地,我们表明静态保真度是一种非常有效的实用探测器,可用于检测避免交叉,从而表征系统及其演化的复杂性。动态保真度是通过含时波函数定义的。以量子受踢转子系统为例,我们重点介绍保真度测量的一些实际应用,以便更好地理解这个具有混合规则 - 混沌相空间的低维系统范式的各种动态机制。