Suppr超能文献

保真度度量在复杂量子系统中的应用。

Applications of fidelity measures to complex quantum systems.

作者信息

Wimberger Sandro

机构信息

Dipartimento di Fisica e Scienze della Terra, Università di Parma, Via G.P. Usberti 7/a, 43124 Parma, Italy INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, Italy Institut für Theoretische Physik, Philosophenweg 12, Universität Heidelberg, 69120 Heidelberg, Germany

出版信息

Philos Trans A Math Phys Eng Sci. 2016 Jun 13;374(2069). doi: 10.1098/rsta.2015.0153.

Abstract

We revisit fidelity as a measure for the stability and the complexity of the quantum motion of single-and many-body systems. Within the context of cold atoms, we present an overview of applications of two fidelities, which we call static and dynamical fidelity, respectively. The static fidelity applies to quantum problems which can be diagonalized since it is defined via the eigenfunctions. In particular, we show that the static fidelity is a highly effective practical detector of avoided crossings characterizing the complexity of the systems and their evolutions. The dynamical fidelity is defined via the time-dependent wave functions. Focusing on the quantum kicked rotor system, we highlight a few practical applications of fidelity measurements in order to better understand the large variety of dynamical regimes of this paradigm of a low-dimensional system with mixed regular-chaotic phase space.

摘要

我们重新审视保真度,将其作为单粒子和多粒子系统量子运动稳定性和复杂性的一种度量。在冷原子的背景下,我们概述了两种保真度的应用,我们分别称之为静态保真度和动态保真度。静态保真度适用于可对角化的量子问题,因为它是通过本征函数定义的。特别地,我们表明静态保真度是一种非常有效的实用探测器,可用于检测避免交叉,从而表征系统及其演化的复杂性。动态保真度是通过含时波函数定义的。以量子受踢转子系统为例,我们重点介绍保真度测量的一些实际应用,以便更好地理解这个具有混合规则 - 混沌相空间的低维系统范式的各种动态机制。

相似文献

1
Applications of fidelity measures to complex quantum systems.
Philos Trans A Math Phys Eng Sci. 2016 Jun 13;374(2069). doi: 10.1098/rsta.2015.0153.
2
Quantum chaos of a mixed open system of kicked cold atoms.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016204. doi: 10.1103/PhysRevE.83.016204. Epub 2011 Jan 5.
3
Fidelity of the quantum δ-kicked accelerator.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):020902. doi: 10.1103/PhysRevE.87.020902. Epub 2013 Feb 27.
4
Quantum signatures of chaos in a kicked top.
Nature. 2009 Oct 8;461(7265):768-71. doi: 10.1038/nature08396.
5
Dynamical tunnelling of ultracold atoms.
Nature. 2001 Jul 5;412(6842):52-5. doi: 10.1038/35083510.
6
Dynamical tunneling of a Bose-Einstein condensate in periodically driven systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Sep;88(3):034901. doi: 10.1103/PhysRevE.88.034901. Epub 2013 Sep 6.
7
Transition to chaos of coupled oscillators: an operator fidelity susceptibility study.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 2):056204. doi: 10.1103/PhysRevE.82.056204. Epub 2010 Nov 9.
8
9
Criticality in the quantum kicked rotor with a smooth potential.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 1):031115. doi: 10.1103/PhysRevE.78.031115. Epub 2008 Sep 10.
10
Quantum chaos and physical distance between quantum states.
Phys Rev E. 2021 Apr;103(4-1):042209. doi: 10.1103/PhysRevE.103.042209.

引用本文的文献

1
Loschmidt echo and time reversal in complex systems.
Philos Trans A Math Phys Eng Sci. 2016 Jun 13;374(2069). doi: 10.1098/rsta.2015.0383.

本文引用的文献

1
Dynamical tunneling of a Bose-Einstein condensate in periodically driven systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Sep;88(3):034901. doi: 10.1103/PhysRevE.88.034901. Epub 2013 Sep 6.
2
Fidelity of the quantum δ-kicked accelerator.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):020902. doi: 10.1103/PhysRevE.87.020902. Epub 2013 Feb 27.
3
Fidelity for kicked atoms with gravity near a quantum resonance.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Mar;85(3 Pt 2):036205. doi: 10.1103/PhysRevE.85.036205. Epub 2012 Mar 12.
4
Experimental observation of Loschmidt time reversal of a quantum chaotic system.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 2):046218. doi: 10.1103/PhysRevE.83.046218. Epub 2011 Apr 25.
5
Sub-Fourier characteristics of a δ-kicked-rotor resonance.
Phys Rev Lett. 2010 Jul 30;105(5):054103. doi: 10.1103/PhysRevLett.105.054103. Epub 2010 Jul 28.
6
Quantum Monte Carlo simulations of fidelity at magnetic quantum phase transitions.
Phys Rev Lett. 2009 Oct 23;103(17):170501. doi: 10.1103/PhysRevLett.103.170501. Epub 2009 Oct 19.
7
Pseudoclassical theory for fidelity of nearly resonant quantum rotors.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 2):035206. doi: 10.1103/PhysRevE.80.035206. Epub 2009 Sep 29.
8
Observation of saturation of fidelity decay with an atom interferometer.
Phys Rev Lett. 2009 Jul 17;103(3):034101. doi: 10.1103/PhysRevLett.103.034101. Epub 2009 Jul 16.
9
Experimental realization of quantum-resonance ratchets at arbitrary quasimomenta.
Phys Rev Lett. 2008 Jan 18;100(2):024103. doi: 10.1103/PhysRevLett.100.024103. Epub 2008 Jan 17.
10
Quantum critical scaling of the geometric tensors.
Phys Rev Lett. 2007 Aug 31;99(9):095701. doi: 10.1103/PhysRevLett.99.095701. Epub 2007 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验