Suppr超能文献

表面肌电控制新型语音合成音素接口。

Surface electromyographic control of a novel phonemic interface for speech synthesis.

机构信息

a Graduate Program for Neuroscience - Computational Neuroscience , Boston University , MA , USA ;

b Department of Speech, Language, and Hearing Sciences , Boston University , Boston , MA , USA ;

出版信息

Augment Altern Commun. 2016 Jun;32(2):120-30. doi: 10.3109/07434618.2016.1170205. Epub 2016 May 4.

Abstract

Many individuals with minimal movement capabilities use AAC to communicate. These individuals require both an interface with which to construct a message (e.g., a grid of letters) and an input modality with which to select targets. This study evaluated the interaction of two such systems: (a) an input modality using surface electromyography (sEMG) of spared facial musculature, and (b) an onscreen interface from which users select phonemic targets. These systems were evaluated in two experiments: (a) participants without motor impairments used the systems during a series of eight training sessions, and (b) one individual who uses AAC used the systems for two sessions. Both the phonemic interface and the electromyographic cursor show promise for future AAC applications.

摘要

许多运动能力有限的人使用 AAC 进行交流。这些人需要一个界面来构建消息(例如,字母网格),以及一种输入模式来选择目标。本研究评估了两种此类系统的交互作用:(a) 使用面部肌肉的表面肌电图 (sEMG) 的输入模式,以及 (b) 用于选择音素目标的屏幕界面。这些系统在两项实验中进行了评估:(a) 没有运动障碍的参与者在一系列八次培训课程中使用了这些系统,以及 (b) 一名使用 AAC 的参与者在两次会议中使用了这些系统。音素界面和肌电图光标都为未来的 AAC 应用展示了前景。

相似文献

1
Surface electromyographic control of a novel phonemic interface for speech synthesis.
Augment Altern Commun. 2016 Jun;32(2):120-30. doi: 10.3109/07434618.2016.1170205. Epub 2016 May 4.
2
Surface electromyographic control of speech synthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5848-51. doi: 10.1109/EMBC.2014.6944958.
3
Discrete vs. continuous surface electromyographic interface control.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4374-7. doi: 10.1109/EMBC.2014.6944593.
4
Effects of augmentative visual training on audio-motor mapping.
Hum Mov Sci. 2014 Jun;35:145-55. doi: 10.1016/j.humov.2014.01.003. Epub 2014 Feb 12.
5
Discrete Versus Continuous Mapping of Facial Electromyography for Human-Machine Interface Control: Performance and Training Effects.
IEEE Trans Neural Syst Rehabil Eng. 2015 Jul;23(4):572-80. doi: 10.1109/TNSRE.2015.2391054. Epub 2015 Jan 20.
6
Optimized and Predictive Phonemic Interfaces for Augmentative and Alternative Communication.
J Speech Lang Hear Res. 2019 Jul 15;62(7):2065-2081. doi: 10.1044/2019_JSLHR-S-MSC18-18-0187.
7
Prediction of Optimal Facial Electromyographic Sensor Configurations for Human-Machine Interface Control.
IEEE Trans Neural Syst Rehabil Eng. 2018 Aug;26(8):1566-1576. doi: 10.1109/TNSRE.2018.2849202. Epub 2018 Jun 20.
8
A modified multimodal communication treatment for individuals with traumatic brain injury.
Augment Altern Commun. 2018 Dec;34(4):323-334. doi: 10.1080/07434618.2018.1523224. Epub 2018 Oct 29.
10
Effects of muscle fatigue on the usability of a myoelectric human-computer interface.
Hum Mov Sci. 2016 Oct;49:225-38. doi: 10.1016/j.humov.2016.06.009. Epub 2016 Jul 22.

引用本文的文献

2
Optimized and Predictive Phonemic Interfaces for Augmentative and Alternative Communication.
J Speech Lang Hear Res. 2019 Jul 15;62(7):2065-2081. doi: 10.1044/2019_JSLHR-S-MSC18-18-0187.
3
Prediction of Optimal Facial Electromyographic Sensor Configurations for Human-Machine Interface Control.
IEEE Trans Neural Syst Rehabil Eng. 2018 Aug;26(8):1566-1576. doi: 10.1109/TNSRE.2018.2849202. Epub 2018 Jun 20.

本文引用的文献

1
Discrete Versus Continuous Mapping of Facial Electromyography for Human-Machine Interface Control: Performance and Training Effects.
IEEE Trans Neural Syst Rehabil Eng. 2015 Jul;23(4):572-80. doi: 10.1109/TNSRE.2015.2391054. Epub 2015 Jan 20.
2
Surface electromyographic control of speech synthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5848-51. doi: 10.1109/EMBC.2014.6944958.
3
RSVP Keyboard: An EEG Based Typing Interface.
Proc IEEE Int Conf Acoust Speech Signal Process. 2012. doi: 10.1109/ICASSP.2012.6287966.
5
Access to augmentative and alternative communication: new technologies and clinical decision-making.
J Pediatr Rehabil Med. 2012;5(1):53-61. doi: 10.3233/PRM-2012-0196.
6
Development and evaluation of a assistive computer interface by SEMG for individuals with spinal cord injuries.
IEEE Int Conf Rehabil Robot. 2011;2011:5975386. doi: 10.1109/ICORR.2011.5975386.
7
Brain-machine interfaces for real-time speech synthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5360-3. doi: 10.1109/IEMBS.2011.6091326.
8
Brain-muscle-computer interface: mobile-phone prototype development and testing.
IEEE Trans Inf Technol Biomed. 2011 Jul;15(4):531-8. doi: 10.1109/TITB.2011.2153208. Epub 2011 May 12.
10
Rapid Communication with a "P300" Matrix Speller Using Electrocorticographic Signals (ECoG).
Front Neurosci. 2011 Feb 7;5:5. doi: 10.3389/fnins.2011.00005. eCollection 2011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验