Liao Shichao, Zong Xu, Seger Brian, Pedersen Thomas, Yao Tingting, Ding Chunmei, Shi Jingying, Chen Jian, Li Can
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, iChEM, Dalian 116023, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Nat Commun. 2016 May 4;7:11474. doi: 10.1038/ncomms11474.
Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge injection, our device shows an optimal solar-to-chemical conversion efficiency of ∼5.9% and an overall photon-chemical-electricity energy conversion efficiency of ∼3.2%, which, to our knowledge, outperforms previously reported SRFCs. The proposed SRFC can be self-photocharged to 0.8 V and delivers a discharge capacity of 730 mAh l(-1). Our work may guide future designs for highly efficient solar rechargeable devices.
太阳能可充电液流电池(SRFCs)提供了一种颇具吸引力的方法,可通过对放电的氧化还原物质进行光电化学再生来原位捕获和存储间歇性太阳能,以用于发电。然而,SRFC的整体性能受到低效光电化学反应的限制。在此,我们报告了一种基于双硅光电化学电池和醌/溴氧化还原液流电池的高效SRFC,用于原位太阳能转换和存储。我们的装置使用窄带隙硅进行高效光子收集,并使用快速氧化还原对进行快速界面电荷注入,显示出约5.9%的最佳太阳能到化学能转换效率和约3.2%的整体光子-化学-电能转换效率,据我们所知,这优于先前报道的SRFCs。所提出的SRFC可自光充电至0.8 V,并具有730 mAh l(-1)的放电容量。我们的工作可能会为高效太阳能可充电装置的未来设计提供指导。