Department of Chemistry, University of Wisconsin - Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.
J Am Chem Soc. 2014 Jun 18;136(24):8504-7. doi: 10.1021/ja5025673. Epub 2014 Jun 3.
We report the preparation and characterization of highly efficient and robust photocathodes based on heterostructures of chemically exfoliated metallic 1T-MoS2 and planar p-type Si for solar-driven hydrogen production. Photocurrents up to 17.6 mA/cm(2) at 0 V vs reversible hydrogen electrode were achieved under simulated 1 sun irradiation, and excellent stability was demonstrated over long-term operation. Electrochemical impedance spectroscopy revealed low charge-transfer resistances at the semiconductor/catalyst and catalyst/electrolyte interfaces, and surface photoresponse measurements also demonstrated slow carrier recombination dynamics and consequently efficient charge carrier separation, providing further evidence for the superior performance. Our results suggest that chemically exfoliated 1T-MoS2/Si heterostructures are promising earth-abundant alternatives to photocathodes based on noble metal catalysts for solar-driven hydrogen production.
我们报告了基于化学剥离的金属 1T-MoS2 和平面 p 型 Si 的异质结构的高效和稳定的光阴极的制备和特性,用于太阳能驱动的制氢。在模拟的 1 个太阳辐照下,实现了高达 0 V 对可逆氢电极的 17.6 mA/cm(2)的光电流,并且在长期运行中表现出优异的稳定性。电化学阻抗谱表明在半导体/催化剂和催化剂/电解质界面处的电荷转移电阻低,表面光响应测量也表明载流子复合动力学缓慢,从而实现了有效的电荷载流子分离,为优异的性能提供了进一步的证据。我们的结果表明,化学剥离的 1T-MoS2/Si 异质结构是用于太阳能驱动制氢的基于贵金属催化剂的光阴极的有前途的丰富地球替代品。