Suppr超能文献

出生后从表达Dmp1的骨细胞/成骨细胞中删除β-连环蛋白会降低对负荷的结构适应性,但不会降低骨膜负荷诱导的骨形成。

Postnatal β-catenin deletion from Dmp1-expressing osteocytes/osteoblasts reduces structural adaptation to loading, but not periosteal load-induced bone formation.

作者信息

Kang Kyung Shin, Hong Jung Min, Robling Alexander G

机构信息

Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.

Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA; Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.

出版信息

Bone. 2016 Jul;88:138-145. doi: 10.1016/j.bone.2016.04.028. Epub 2016 Apr 30.

Abstract

Mechanical signal transduction in bone tissue begins with load-induced activation of several cellular pathways in the osteocyte population. A key pathway that participates in mechanotransduction is Wnt/Lrp5 signaling. A putative downstream mediator of activated Lrp5 is the nucleocytoplasmic shuttling protein β-catenin (βcat), which migrates to the nucleus where it functions as a transcriptional co-activator. We investigated whether osteocytic βcat participates in Wnt/Lrp5-mediated mechanotransduction by conducting ulnar loading experiments in mice with or without chemically induced βcat deletion in osteocytes. Mice harboring βcat floxed loss-of-function alleles (βcat(f/f)) were bred to the inducible osteocyte Cre transgenic (10)(kb)Dmp1-CreERt2. Adult male mice were induced to recombine the βcat alleles using tamoxifen, and intermittent ulnar loading sessions were applied over the following week. Although adult-onset deletion of βcat from Dmp1-expressing cells reduced skeletal mass, the bone tissue was responsive to mechanical stimulation as indicated by increased relative periosteal bone formation rates in recombined mice. However, load-induced improvements in cross sectional geometric properties were compromised in recombined mice. The collective results indicate that the osteoanabolic response to loading can occur on the periosteal surface when β-cat levels are significantly reduced in Dmp1-expressing cells, suggesting that either (i) only low levels of β-cat are required for mechanically induced bone formation on the periosteal surface, or (ii) other additional downstream mediators of Lrp5 might participate in transducing load-induced Wnt signaling.

摘要

骨组织中的机械信号转导始于骨细胞群体中几种细胞途径的负荷诱导激活。参与机械转导的一个关键途径是Wnt/Lrp5信号通路。活化的Lrp5的一个假定下游介质是核质穿梭蛋白β-连环蛋白(βcat),它迁移到细胞核并在那里作为转录共激活因子发挥作用。我们通过在有或没有化学诱导的骨细胞βcat缺失的小鼠中进行尺骨负荷实验,研究了骨细胞βcat是否参与Wnt/Lrp5介导的机械转导。将携带βcat功能缺失的floxed等位基因(βcat(f/f))的小鼠与可诱导的骨细胞Cre转基因(10)(kb)Dmp1-CreERt2进行杂交。成年雄性小鼠使用他莫昔芬诱导βcat等位基因重组,并在接下来的一周内进行间歇性尺骨负荷实验。尽管从表达Dmp1的细胞中成年期缺失βcat会降低骨骼质量,但重组小鼠中相对骨膜骨形成率增加表明骨组织对机械刺激有反应。然而,重组小鼠中负荷诱导的横截面几何特性改善受到损害。总体结果表明,当表达Dmp1的细胞中β-cat水平显著降低时,骨膜表面对负荷的骨合成代谢反应仍可发生,这表明要么(i)骨膜表面机械诱导的骨形成仅需要低水平的β-cat,要么(ii)Lrp5的其他额外下游介质可能参与转导负荷诱导的Wnt信号。

相似文献

2
Adult-Onset Deletion of β-Catenin in (10kb)Dmp1-Expressing Cells Prevents Intermittent PTH-Induced Bone Gain.
Endocrinology. 2016 Aug;157(8):3047-57. doi: 10.1210/en.2015-1587. Epub 2016 Jun 2.
4
Pten deletion in Dmp1-expressing cells does not rescue the osteopenic effects of Wnt/β-catenin suppression.
J Cell Physiol. 2020 Dec;235(12):9785-9794. doi: 10.1002/jcp.29792. Epub 2020 Jun 11.
7
Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading.
Bone. 2012 Jan;50(1):209-17. doi: 10.1016/j.bone.2011.10.025. Epub 2011 Oct 30.
8
Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice.
FASEB J. 2011 Jul;25(7):2418-32. doi: 10.1096/fj.10-180299. Epub 2011 Mar 31.
10
Estrogen receptor α in osteocytes regulates trabecular bone formation in female mice.
Bone. 2014 Mar;60:68-77. doi: 10.1016/j.bone.2013.12.005. Epub 2013 Dec 10.

引用本文的文献

1
The Critical Role of The Piezo1/β-catenin/ATF4 Axis on The Stemness of Gli1 BMSCs During Simulated Microgravity-Induced Bone Loss.
Adv Sci (Weinh). 2023 Nov;10(32):e2303375. doi: 10.1002/advs.202303375. Epub 2023 Sep 27.
2
Methodological aspects of axial loading in rodents: a systematic review.
J Musculoskelet Neuronal Interact. 2023 Jun 1;23(2):236-262.
3
Connexin 43 hemichannels and prostaglandin E release in anabolic function of the skeletal tissue to mechanical stimulation.
Front Cell Dev Biol. 2023 Apr 13;11:1151838. doi: 10.3389/fcell.2023.1151838. eCollection 2023.
4
Protein Kinase G2 Is Essential for Skeletal Homeostasis and Adaptation to Mechanical Loading in Male but Not Female Mice.
J Bone Miner Res. 2023 Jan;38(1):171-185. doi: 10.1002/jbmr.4746. Epub 2022 Nov 27.
6
Progress of Periosteal Osteogenesis: The Prospect of In Vivo Bioreactor.
Orthop Surg. 2022 Sep;14(9):1930-1939. doi: 10.1111/os.13325. Epub 2022 Jul 6.
7
Effects of Mechanical Stress Stimulation on Function and Expression Mechanism of Osteoblasts.
Front Bioeng Biotechnol. 2022 Feb 17;10:830722. doi: 10.3389/fbioe.2022.830722. eCollection 2022.
8
The Wnt pathway: An important control mechanism in bone's response to mechanical loading.
Bone. 2021 Dec;153:116087. doi: 10.1016/j.bone.2021.116087. Epub 2021 Jul 5.
10
New Advances in Osteocyte Mechanotransduction.
Curr Osteoporos Rep. 2021 Feb;19(1):101-106. doi: 10.1007/s11914-020-00650-y. Epub 2021 Jan 9.

本文引用的文献

2
Sclerostin inhibition reverses skeletal fragility in an Lrp5-deficient mouse model of OPPG syndrome.
Sci Transl Med. 2013 Nov 13;5(211):211ra158. doi: 10.1126/scitranslmed.3006627.
5
Forum on bone and skeletal muscle interactions: summary of the proceedings of an ASBMR workshop.
J Bone Miner Res. 2013 Sep;28(9):1857-65. doi: 10.1002/jbmr.1980.
6
Inactivation of Lrp5 in osteocytes reduces young's modulus and responsiveness to the mechanical loading.
Bone. 2013 May;54(1):35-43. doi: 10.1016/j.bone.2013.01.033. Epub 2013 Jan 26.
8
In vitro and in vivo approaches to study osteocyte biology.
Bone. 2013 Jun;54(2):296-306. doi: 10.1016/j.bone.2012.09.040. Epub 2012 Oct 13.
10
Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading.
Bone. 2012 Jan;50(1):209-17. doi: 10.1016/j.bone.2011.10.025. Epub 2011 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验