Suppr超能文献

作为结构抗氧化剂的膜:丙二醛在对氧化敏感的叶绿体脂肪酸中的来源循环利用。

Membranes as Structural Antioxidants: RECYCLING OF MALONDIALDEHYDE TO ITS SOURCE IN OXIDATION-SENSITIVE CHLOROPLAST FATTY ACIDS.

作者信息

Schmid-Siegert Emanuel, Stepushenko Olga, Glauser Gaetan, Farmer Edward E

机构信息

From the Department of Plant Molecular Biology, Biophore, University of Lausanne, 1015 Lausanne, Switzerland and.

Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, 2009 Neuchâtel, Switzerland.

出版信息

J Biol Chem. 2016 Jun 17;291(25):13005-13. doi: 10.1074/jbc.M116.729921. Epub 2016 May 3.

Abstract

Genetic evidence suggests that membranes rich in polyunsaturated fatty acids (PUFAs) act as supramolecular antioxidants that capture reactive oxygen species, thereby limiting damage to proteins. This process generates lipid fragmentation products including malondialdehyde (MDA), an archetypal marker of PUFA oxidation. We observed transient increases in levels of endogenous MDA in wounded Arabidopsis thaliana leaves, raising the possibility that MDA is metabolized. We developed a rigorous ion exchange method to purify enzymatically generated (13)C- and (14)C-MDA. Delivered as a volatile to intact plants, MDA was efficiently incorporated into lipids. Mass spectral and genetic analyses identified the major chloroplast galactolipid: α-linolenic acid (18:3)-7Z,10Z,13Z-hexadecatrienoic acid (16:3)-monogalactosyldiacylglycerol (18:3-16:3-MGDG) as an end-product of MDA incorporation. Consistent with this, the fad3-2 fad7-2 fad8 mutant that lacks tri-unsaturated fatty acids incorporated (14)C-MDA into 18:2-16:2-MGDG. Saponification of (14)C-labeled 18:3-16:3-MGDG revealed 84% of (14)C-label in the acyl groups with the remaining 16% in the head group. 18:3-16:3-MGDG is enriched proximal to photosystem II and is likely a major in vivo source of MDA in photosynthetic tissues. We propose that nonenzymatically generated lipid fragments such as MDA are recycled back into plastidic galactolipids that, in their role as cell protectants, can again be fragmented into MDA.

摘要

遗传证据表明,富含多不饱和脂肪酸(PUFA)的膜作为超分子抗氧化剂,能够捕获活性氧,从而限制对蛋白质的损伤。这一过程会产生脂质碎片产物,包括丙二醛(MDA),它是PUFA氧化的典型标志物。我们观察到受伤的拟南芥叶片中内源性MDA水平出现短暂升高,这增加了MDA被代谢的可能性。我们开发了一种严格的离子交换方法来纯化酶促生成的(13)C和(14)C-MDA。以挥发性形式输送到完整植物中后,MDA被有效地整合到脂质中。质谱和遗传分析确定主要的叶绿体半乳糖脂:α-亚麻酸(18:3)-7Z,10Z,13Z-十六碳三烯酸(16:3)-单半乳糖基二酰基甘油(18:3-16:3-MGDG)是MDA整合的终产物。与此一致的是,缺乏三不饱和脂肪酸的fad3-2 fad7-2 fad8突变体将(14)C-MDA整合到18:2-16:2-MGDG中。对(14)C标记的18:3-16:3-MGDG进行皂化反应后发现,84%的(14)C标记在酰基中,其余16%在头部基团中。18:3-16:3-MGDG在光系统II附近富集,可能是光合组织中体内MDA的主要来源。我们提出,非酶促产生的脂质碎片如MDA会被重新循环回质体半乳糖脂中,而这些半乳糖脂作为细胞保护剂,又可以再次分解为MDA。

相似文献

1
Membranes as Structural Antioxidants: RECYCLING OF MALONDIALDEHYDE TO ITS SOURCE IN OXIDATION-SENSITIVE CHLOROPLAST FATTY ACIDS.
J Biol Chem. 2016 Jun 17;291(25):13005-13. doi: 10.1074/jbc.M116.729921. Epub 2016 May 3.
3
Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress.
J Plant Physiol. 2016 Jul 1;198:32-8. doi: 10.1016/j.jplph.2016.03.018. Epub 2016 Apr 19.
6
A predicted plastid rhomboid protease affects phosphatidic acid metabolism in Arabidopsis thaliana.
Plant J. 2019 Sep;99(5):978-987. doi: 10.1111/tpj.14377. Epub 2019 Jun 7.
7
A mutant of the Arabidopsis thaliana TOC159 gene accumulates reduced levels of linolenic acid and monogalactosyldiacylglycerol.
Plant Physiol Biochem. 2013 Dec;73:344-50. doi: 10.1016/j.plaphy.2013.10.018. Epub 2013 Oct 21.
9
Malondialdehyde generated from peroxidized linolenic acid causes protein modification in heat-stressed plants.
Plant Physiol Biochem. 2008 Aug-Sep;46(8-9):786-93. doi: 10.1016/j.plaphy.2008.04.018. Epub 2008 Apr 29.

引用本文的文献

1
Impact of gaseous ozone treatment of fish carcasses (Gadus morhua) on the microbiological load and their quality.
PLoS One. 2025 Aug 18;20(8):e0327866. doi: 10.1371/journal.pone.0327866. eCollection 2025.
2
Antiviral Activity of the Marine Haptophyta .
Mar Drugs. 2024 Dec 28;23(1):12. doi: 10.3390/md23010012.
4
A -mediated metabolic alteration participates in liver responses to low-dose bavachin.
J Pharm Anal. 2023 Jul;13(7):806-816. doi: 10.1016/j.jpha.2023.03.010. Epub 2023 Apr 5.
5
Glyceroglycolipids in marine algae: A review of their pharmacological activity.
Front Pharmacol. 2022 Oct 21;13:1008797. doi: 10.3389/fphar.2022.1008797. eCollection 2022.
7
Lipidomics-Assisted GWAS (lGWAS) Approach for Improving High-Temperature Stress Tolerance of Crops.
Int J Mol Sci. 2022 Aug 20;23(16):9389. doi: 10.3390/ijms23169389.

本文引用的文献

2
Formation of singlet oxygen and protection against its oxidative damage in Photosystem II under abiotic stress.
J Photochem Photobiol B. 2014 Aug;137:39-48. doi: 10.1016/j.jphotobiol.2014.04.025. Epub 2014 May 6.
4
5
ROS-mediated lipid peroxidation and RES-activated signaling.
Annu Rev Plant Biol. 2013;64:429-50. doi: 10.1146/annurev-arplant-050312-120132. Epub 2013 Feb 28.
8
Reactive carbonyl species: their production from lipid peroxides, action in environmental stress, and the detoxification mechanism.
Plant Physiol Biochem. 2012 Oct;59:90-7. doi: 10.1016/j.plaphy.2012.03.010. Epub 2012 Mar 29.
9
Acyl-lipid metabolism.
Arabidopsis Book. 2010;8:e0133. doi: 10.1199/tab.0133. Epub 2010 Jun 11.
10
Inducible malondialdehyde pools in zones of cell proliferation and developing tissues in Arabidopsis.
J Biol Chem. 2012 Mar 16;287(12):8954-62. doi: 10.1074/jbc.M111.322842. Epub 2012 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验