Anderson Matthew J, Schimmang Thomas, Lewandoski Mark
Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America.
Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain.
PLoS Genet. 2016 May 4;12(5):e1006018. doi: 10.1371/journal.pgen.1006018. eCollection 2016 May.
During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is a major advance toward understanding how these tissue layers interact during axis extension with important implications in human disease.
在脊椎动物轴延伸过程中,相邻组织层会发生深刻的形态变化:在神经上皮内,神经管闭合和神经嵴形成正在进行,而在轴旁中胚层内,体节正从原肠胚中胚层(PSM)中分割出来。关于这些组织之间调节其协调形态发生的信号,我们了解甚少。在这里,我们分析了小鼠Fgf3基因敲除纯合子的后轴截断情况,并证明PSM来源的FGF3的最早作用是调节相邻神经上皮中的BMP信号。FGF3缺失会导致BMP信号升高,从而导致神经上皮增殖增加、神经管闭合延迟和神经嵴特化过早。我们证明,升高的BMP4在体外会消耗PSM祖细胞,模拟Fgf3突变体的表型,这表明过量的BMP信号会导致Fgf3轴缺陷。为了在体内验证这一点,我们通过去除一个编码BMP拮抗剂的Noggin拷贝来增加Fgf3突变体中的BMP信号。在这些突变体中,Fgf3表型的所有参数都加剧了:神经管闭合延迟、神经嵴特化过早和轴过早终止。相反,通过丧失BMP受体活性在Fgf3突变体中基因性降低BMP信号,可减轻形态学缺陷。在Fgf3突变体尾芽中观察到异常凋亡。然而,我们证明细胞死亡不会导致Fgf3表型:通过缺失促凋亡基因来阻断凋亡,令人惊讶地增加了所有Fgf3缺陷,包括导致脊柱裂。我们证明,阻断凋亡的这种违反直觉的后果是由神经上皮中产生BMP的细胞存活增加引起的。因此,我们表明尾端脊椎动物胚胎中的FGF3调节神经上皮中的BMP信号,进而调节神经管闭合、神经嵴特化和轴终止。揭示这个FGF3 - BMP信号轴是朝着理解这些组织层在轴延伸过程中如何相互作用迈出的重要一步,对人类疾病具有重要意义。