Biotechnology Institute, University of Minnesota , Saint Paul, Minnesota 55108, United States.
Department of Plant Biology, 1500 Gortner Avenue, University of Minnesota , Saint Paul, Minnesota 55108, United States.
Anal Chem. 2016 Jun 7;88(11):6092-9. doi: 10.1021/acs.analchem.6b01703. Epub 2016 May 16.
In vivo isotopic labeling coupled with high-resolution proteomics is used to investigate primary metabolism in techniques such as stable isotope probing (protein-SIP) and peptide-based metabolic flux analysis (PMFA). Isotopic enrichment of carbon substrates and intracellular metabolism determine the distribution of isotopes within amino acids. The resulting amino acid mass distributions (AMDs) are convoluted into peptide mass distributions (PMDs) during protein synthesis. With no a priori knowledge on metabolic fluxes, the PMDs are therefore unknown. This complicates labeled peptide identification because prior knowledge on PMDs is used in all available peptide identification software. An automated framework for the identification and quantification of PMDs for nonuniformly labeled samples is therefore lacking. To unlock the potential of peptide labeling experiments for high-throughput flux analysis and other complex labeling experiments, an unsupervised peptide identification and quantification method was developed that uses discrete deconvolution of mass distributions of identified peptides to inform on the mass distributions of otherwise unidentifiable peptides. Uniformly (13)C-labeled Escherichia coli protein was used to test the developed feature reconstruction and deconvolution algorithms. The peptide identification was validated by comparing MS(2)-identified peptides to peptides identified from PMDs using unlabeled E. coli protein. Nonuniformly labeled Glycine max protein was used to demonstrate the technology on a representative sample suitable for flux analysis. Overall, automatic peptide identification and quantification were comparable or superior to manual extraction, enabling proteomics-based technology for high-throughput flux analysis studies.
体内同位素标记与高分辨率蛋白质组学结合用于研究初级代谢物,例如稳定同位素探测(蛋白质-SIP)和基于肽的代谢通量分析(PMFA)。碳底物的同位素富集和细胞内代谢决定了氨基酸内同位素的分布。在蛋白质合成过程中,产生的氨基酸质量分布(AMD)被卷积成肽质量分布(PMD)。由于对代谢通量没有先验知识,因此 PMD 是未知的。这使得标记肽的鉴定变得复杂,因为所有可用的肽鉴定软件都使用了 PMD 的先验知识。因此,缺乏针对非均匀标记样品的 PMD 的自动鉴定和定量框架。为了释放肽标记实验在高通量通量分析和其他复杂标记实验中的潜力,开发了一种无监督的肽鉴定和定量方法,该方法使用离散卷积质量分布的鉴定肽来提供其他无法鉴定肽的质量分布信息。使用均匀(13)C 标记的大肠杆菌蛋白质来测试所开发的特征重建和卷积算法。通过将 MS(2)-鉴定的肽与使用未标记的大肠杆菌蛋白质从 PMD 鉴定的肽进行比较,验证了肽的鉴定。使用代表性的适合通量分析的 Glycine max 蛋白质来证明该技术。总体而言,自动肽鉴定和定量与手动提取相当或优于手动提取,使基于蛋白质组学的技术能够进行高通量通量分析研究。