Suppr超能文献

基因组印记的新视角,一种在发育中和成体大脑中至关重要且多方面的表观遗传调控模式。

New Perspectives on Genomic Imprinting, an Essential and Multifaceted Mode of Epigenetic Control in the Developing and Adult Brain.

作者信息

Perez Julio D, Rubinstein Nimrod D, Dulac Catherine

机构信息

Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138; email:

出版信息

Annu Rev Neurosci. 2016 Jul 8;39:347-84. doi: 10.1146/annurev-neuro-061010-113708. Epub 2016 Apr 25.

Abstract

Mammalian evolution entailed multiple innovations in gene regulation, including the emergence of genomic imprinting, an epigenetic regulation leading to the preferential expression of a gene from its maternal or paternal allele. Genomic imprinting is highly prevalent in the brain, yet, until recently, its central roles in neural processes have not been fully appreciated. Here, we provide a comprehensive survey of adult and developmental brain functions influenced by imprinted genes, from neural development and wiring to synaptic function and plasticity, energy balance, social behaviors, emotions, and cognition. We further review the widespread identification of parental biases alongside monoallelic expression in brain tissues, discuss their potential roles in dosage regulation of key neural pathways, and suggest possible mechanisms underlying the dynamic regulation of imprinting in the brain. This review should help provide a better understanding of the significance of genomic imprinting in the normal and pathological brain of mammals including humans.

摘要

哺乳动物的进化在基因调控方面带来了多项创新,包括基因组印记的出现,这是一种表观遗传调控,导致基因从其母本或父本等位基因中优先表达。基因组印记在大脑中高度普遍,然而,直到最近,其在神经过程中的核心作用尚未得到充分认识。在这里,我们全面综述了受印记基因影响的成年和发育大脑功能,从神经发育和神经连接到突触功能和可塑性、能量平衡、社会行为、情绪和认知。我们进一步回顾了在脑组织中与单等位基因表达同时广泛存在的亲本偏向性的鉴定,讨论了它们在关键神经通路剂量调节中的潜在作用,并提出了大脑中印迹动态调控的可能机制。这篇综述应有助于更好地理解基因组印记在包括人类在内的哺乳动物正常和病理大脑中的重要性。

相似文献

1
New Perspectives on Genomic Imprinting, an Essential and Multifaceted Mode of Epigenetic Control in the Developing and Adult Brain.
Annu Rev Neurosci. 2016 Jul 8;39:347-84. doi: 10.1146/annurev-neuro-061010-113708. Epub 2016 Apr 25.
2
Genomic Imprinting and Physiological Processes in Mammals.
Cell. 2019 Feb 21;176(5):952-965. doi: 10.1016/j.cell.2019.01.043.
3
Genomic imprinting: employing and avoiding epigenetic processes.
Genes Dev. 2009 Sep 15;23(18):2124-33. doi: 10.1101/gad.1841409.
4
Genetic and epigenetic dysregulation of imprinted genes in the brain.
Epigenomics. 2010 Dec;2(6):743-63. doi: 10.2217/epi.10.61.
5
6
Genome-wide identification of new imprinted genes.
Brief Funct Genomics. 2010 Jul;9(4):304-14. doi: 10.1093/bfgp/elq016. Epub 2010 Jun 29.
7
High-resolution analysis of parent-of-origin allelic expression in the mouse brain.
Science. 2010 Aug 6;329(5992):643-8. doi: 10.1126/science.1190830. Epub 2010 Jul 8.
8
Genomic imprinting during seed development.
Adv Genet. 2002;46:165-214. doi: 10.1016/s0065-2660(02)46007-5.
9
Epigenetic regulation of mammalian imprinted genes: from primary to functional imprints.
Prog Mol Subcell Biol. 2005;38:207-36. doi: 10.1007/3-540-27310-7_9.
10
The conflict theory of genomic imprinting: how much can be explained?
Curr Top Dev Biol. 1998;40:255-93. doi: 10.1016/s0070-2153(08)60369-5.

引用本文的文献

3
Monoallelic gene expression in developing cells increases genetic noise and Shannon entropy.
Commun Biol. 2025 Jun 4;8(1):857. doi: 10.1038/s42003-025-08128-2.
6
Epigenetic regulation in adult neural stem cells.
Front Cell Dev Biol. 2024 Jan 31;12:1331074. doi: 10.3389/fcell.2024.1331074. eCollection 2024.
7
Epigenetic control and genomic imprinting dynamics of the Dlk1-Dio3 domain.
Front Cell Dev Biol. 2023 Dec 12;11:1328806. doi: 10.3389/fcell.2023.1328806. eCollection 2023.
8
The parenting hub of the hypothalamus is a focus of imprinted gene action.
PLoS Genet. 2023 Oct 19;19(10):e1010961. doi: 10.1371/journal.pgen.1010961. eCollection 2023 Oct.
9
Allelic chromatin structure precedes imprinted expression of during neurogenesis.
Genes Dev. 2023 Sep 1;37(17-18):829-843. doi: 10.1101/gad.350896.123. Epub 2023 Oct 11.
10
Novel epigenetic molecular therapies for imprinting disorders.
Mol Psychiatry. 2023 Aug;28(8):3182-3193. doi: 10.1038/s41380-023-02208-7. Epub 2023 Aug 25.

本文引用的文献

1
Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci.
Clin Epigenetics. 2015 Nov 14;7:123. doi: 10.1186/s13148-015-0143-8. eCollection 2015.
5
An Autism-Linked Mutation Disables Phosphorylation Control of UBE3A.
Cell. 2015 Aug 13;162(4):795-807. doi: 10.1016/j.cell.2015.06.045. Epub 2015 Aug 6.
6
Noncanonical Genomic Imprinting Effects in Offspring.
Cell Rep. 2015 Aug 11;12(6):979-91. doi: 10.1016/j.celrep.2015.07.017. Epub 2015 Jul 30.
7
Genetic Approaches to Hypothalamic-Pituitary-Adrenal Axis Regulation.
Neuropsychopharmacology. 2016 Jan;41(1):245-60. doi: 10.1038/npp.2015.215. Epub 2015 Jul 20.
8
UBE3A Regulates Synaptic Plasticity and Learning and Memory by Controlling SK2 Channel Endocytosis.
Cell Rep. 2015 Jul 21;12(3):449-61. doi: 10.1016/j.celrep.2015.06.023. Epub 2015 Jul 9.
10
Structural Components of Synaptic Plasticity and Memory Consolidation.
Cold Spring Harb Perspect Biol. 2015 Jul 1;7(7):a021758. doi: 10.1101/cshperspect.a021758.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验