Suppr超能文献

体内中等强度收缩过程中肌肉收缩特性对运动单位放电频率的影响。

Influence of the contractile properties of muscle on motor unit firing rates during a moderate-intensity contraction in vivo.

作者信息

Trevino Michael A, Herda Trent J, Fry Andrew C, Gallagher Philip M, Vardiman John P, Mosier Eric M, Miller Jonathan D

机构信息

Neuromechanics Laboratory, University of Kansas, Lawrence, Kansas;

Applied Physiology Laboratory, University of Kansas, Lawrence, Kansas; and.

出版信息

J Neurophysiol. 2016 Aug 1;116(2):552-62. doi: 10.1152/jn.01021.2015. Epub 2016 May 4.

Abstract

It is suggested that firing rate characteristics of motor units (MUs) are influenced by the physical properties of the muscle. However, no study has correlated MU firing rates at recruitment, targeted force, or derecruitment with the contractile properties of the muscle in vivo. Twelve participants (age = 20.67 ± 2.35 yr) performed a 40% isometric maximal voluntary contraction of the leg extensors that included linearly increasing, steady force, and decreasing segments. Muscle biopsies were collected with myosin heavy chain (MHC) content quantified, and surface electromyography (EMG) was recorded from the vastus lateralis. The EMG signal was decomposed into the firing events of single MUs. Slopes and y-intercepts were calculated for 1) firing rates at recruitment vs. recruitment threshold, 2) mean firing rates at steady force vs. recruitment threshold, and 3) firing rates at derecruitment vs. derecruitment threshold relationships for each subject. Correlations among type I %MHC isoform content and the slopes and y-intercepts from the three relationships were examined. Type I %MHC isoform content was correlated with MU firing rates at recruitment (y-intercepts: r = -0.577; slopes: r = 0.741) and targeted force (slopes: r = 0.853) vs. recruitment threshold and MU firing rates at derecruitment (y-intercept: r = -0.597; slopes: r = 0.701) vs. derecruitment threshold relationships. However, the majority of the individual MU firing rates vs. recruitment and derecruitment relationships were not significant (P > 0.05) and, thus, revealed no systematic pattern. In contrast, MU firing rates during the steady force demonstrated a systematic pattern with higher firing rates for the lower- than higher-threshold MUs and were correlated with the physical properties of MUs in vivo.

摘要

有研究表明,运动单位(MUs)的放电频率特性受肌肉物理特性的影响。然而,尚无研究将募集、目标力或去募集时的运动单位放电频率与体内肌肉的收缩特性相关联。12名参与者(年龄 = 20.67 ± 2.35岁)进行了腿部伸肌40%的等长最大自主收缩,收缩过程包括线性增加、稳定力和下降阶段。采集肌肉活检样本并对肌球蛋白重链(MHC)含量进行定量分析,同时记录股外侧肌的表面肌电图(EMG)。将肌电图信号分解为单个运动单位的放电事件。计算每个受试者的以下三种关系的斜率和y轴截距:1)募集时的放电频率与募集阈值的关系;2)稳定力时的平均放电频率与募集阈值的关系;3)去募集时的放电频率与去募集阈值的关系。研究了I型MHC同工型含量与上述三种关系的斜率和y轴截距之间的相关性。I型MHC同工型含量与募集时运动单位放电频率(y轴截距:r = -0.577;斜率:r = 0.741)、目标力与募集阈值关系时的运动单位放电频率(斜率:r = 0.853)以及去募集时运动单位放电频率与去募集阈值关系(y轴截距:r = -0.597;斜率:r = 0.701)相关。然而,大多数个体运动单位放电频率与募集和去募集的关系并不显著(P > 0.05),因此未显示出系统模式。相比之下,稳定力期间运动单位放电频率呈现出系统模式,阈值较低的运动单位比阈值较高的运动单位放电频率更高,并且与体内运动单位的物理特性相关。

相似文献

1
Influence of the contractile properties of muscle on motor unit firing rates during a moderate-intensity contraction in vivo.
J Neurophysiol. 2016 Aug 1;116(2):552-62. doi: 10.1152/jn.01021.2015. Epub 2016 May 4.
9
Vastus lateralis muscle tissue composition and motor unit properties in chronically endurance-trained vs. sedentary women.
Eur J Appl Physiol. 2018 Sep;118(9):1789-1800. doi: 10.1007/s00421-018-3909-9. Epub 2018 Jun 11.
10
The effect of rate of torque development on motor unit recruitment and firing rates during isometric voluntary trapezoidal contractions.
Exp Brain Res. 2019 Oct;237(10):2653-2664. doi: 10.1007/s00221-019-05612-0. Epub 2019 Aug 8.

引用本文的文献

2
Changes in torque complexity with fatigue are related to motor unit behaviour.
Sci Rep. 2025 Apr 15;15(1):12881. doi: 10.1038/s41598-025-96102-7.
3
Supraspinal, spinal, and motor unit adjustments to fatiguing isometric contractions of the knee extensors at low and high submaximal intensities in males.
J Appl Physiol (1985). 2024 Jun 1;136(6):1546-1558. doi: 10.1152/japplphysiol.00675.2023. Epub 2024 May 2.
4
Blood flow restriction increases necessary muscle excitation of the elbow flexors during a single high-load contraction.
Eur J Appl Physiol. 2024 Jun;124(6):1807-1820. doi: 10.1007/s00421-023-05405-y. Epub 2024 Jan 18.
5
Modified motor unit properties in residual muscle following transtibial amputation.
J Neural Eng. 2024 Jan 17;21(1). doi: 10.1088/1741-2552/ad1ac2.
8
Effect of repeated eccentric exercise on muscle damage markers and motor unit control strategies in arm and hand muscle.
Sports Med Health Sci. 2021 Dec 11;4(1):44-53. doi: 10.1016/j.smhs.2021.12.002. eCollection 2022 Mar.
9
Resistance exercise training and the motor unit.
Eur J Appl Physiol. 2022 Sep;122(9):2019-2035. doi: 10.1007/s00421-022-04983-7. Epub 2022 Jun 25.

本文引用的文献

1
Action potential amplitude as a noninvasive indicator of motor unit-specific hypertrophy.
J Neurophysiol. 2016 May 1;115(5):2608-14. doi: 10.1152/jn.00039.2016. Epub 2016 Mar 2.
3
Single muscle fibre contractile properties differ between body-builders, power athletes and control subjects.
Exp Physiol. 2015 Nov;100(11):1331-41. doi: 10.1113/EP085267. Epub 2015 Oct 18.
4
The effects of chronic exercise training status on motor unit activation and deactivation control strategies.
J Sports Sci. 2016;34(3):199-208. doi: 10.1080/02640414.2015.1046396. Epub 2015 May 18.
5
Motor unit control strategies of endurance- versus resistance-trained individuals.
Muscle Nerve. 2015 Nov;52(5):832-43. doi: 10.1002/mus.24597. Epub 2015 Sep 3.
6
Biomechanical benefits of the Onion-Skin motor unit control scheme.
J Biomech. 2015 Jan 21;48(2):195-203. doi: 10.1016/j.jbiomech.2014.12.003. Epub 2014 Dec 9.
8
The effective neural drive to muscles is the common synaptic input to motor neurons.
J Physiol. 2014 Aug 15;592(16):3427-41. doi: 10.1113/jphysiol.2014.273581. Epub 2014 May 23.
9
Synchronization of low- and high-threshold motor units.
Muscle Nerve. 2014 Apr;49(4):575-83. doi: 10.1002/mus.23978. Epub 2014 Jan 6.
10
Neural control of muscle force: indications from a simulation model.
J Neurophysiol. 2013 Mar;109(6):1548-70. doi: 10.1152/jn.00237.2012. Epub 2012 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验