Suppr超能文献

促进癌症基因组数据的负责任且有效共享的文化。

Facilitating a culture of responsible and effective sharing of cancer genome data.

作者信息

Siu Lillian L, Lawler Mark, Haussler David, Knoppers Bartha Maria, Lewin Jeremy, Vis Daniel J, Liao Rachel G, Andre Fabrice, Banks Ian, Barrett J Carl, Caldas Carlos, Camargo Anamaria Aranha, Fitzgerald Rebecca C, Mao Mao, Mattison John E, Pao William, Sellers William R, Sullivan Patrick, Teh Bin Tean, Ward Robyn L, ZenKlusen Jean Claude, Sawyers Charles L, Voest Emile E

机构信息

Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada.

Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK.

出版信息

Nat Med. 2016 May 5;22(5):464-71. doi: 10.1038/nm.4089.

Abstract

Rapid and affordable tumor molecular profiling has led to an explosion of clinical and genomic data poised to enhance the diagnosis, prognostication and treatment of cancer. A critical point has now been reached at which the analysis and storage of annotated clinical and genomic information in unconnected silos will stall the advancement of precision cancer care. Information systems must be harmonized to overcome the multiple technical and logistical barriers to data sharing. Against this backdrop, the Global Alliance for Genomic Health (GA4GH) was established in 2013 to create a common framework that enables responsible, voluntary and secure sharing of clinical and genomic data. This Perspective from the GA4GH Clinical Working Group Cancer Task Team highlights the data-aggregation challenges faced by the field, suggests potential collaborative solutions and describes how GA4GH can catalyze a harmonized data-sharing culture.

摘要

快速且经济实惠的肿瘤分子谱分析已带来临床和基因组数据的激增,有望提升癌症的诊断、预后评估和治疗水平。目前已到了一个关键节点,即孤立地分析和存储带注释的临床及基因组信息将阻碍精准癌症治疗的进展。必须协调信息系统,以克服数据共享面临的多重技术和后勤障碍。在此背景下,全球基因组健康联盟(GA4GH)于2013年成立,旨在创建一个通用框架,实现临床和基因组数据的负责任、自愿且安全的共享。GA4GH临床工作组癌症任务组的这一观点强调了该领域面临的数据汇总挑战,提出了潜在的合作解决方案,并描述了GA4GH如何推动形成协调一致的数据共享文化。

相似文献

1
Facilitating a culture of responsible and effective sharing of cancer genome data.
Nat Med. 2016 May 5;22(5):464-71. doi: 10.1038/nm.4089.
2
ClinGen advancing genomic data-sharing standards as a GA4GH driver project.
Hum Mutat. 2018 Nov;39(11):1686-1689. doi: 10.1002/humu.23625.
10
GA4GH Phenopackets: A Practical Introduction.
Adv Genet (Hoboken). 2022 Aug 25;4(1):2200016. doi: 10.1002/ggn2.202200016. eCollection 2023 Mar.

引用本文的文献

1
A call to action to scale up research and clinical genomic data sharing.
Nat Rev Genet. 2025 Feb;26(2):141-147. doi: 10.1038/s41576-024-00776-0. Epub 2024 Oct 7.
2
Organizational Factors in Clinical Data Sharing for Artificial Intelligence in Health Care.
JAMA Netw Open. 2023 Dec 1;6(12):e2348422. doi: 10.1001/jamanetworkopen.2023.48422.
4
A patient-driven clinicogenomic partnership for metastatic prostate cancer.
Cell Genom. 2022 Sep 14;2(9). doi: 10.1016/j.xgen.2022.100169. Epub 2022 Aug 19.
5
Identification and Assessment of Risks in Biobanking: The Case of the Cancer Institute of Bari.
Cancers (Basel). 2022 Jul 16;14(14):3460. doi: 10.3390/cancers14143460.
6
Delivering precision oncology to patients with cancer.
Nat Med. 2022 Apr;28(4):658-665. doi: 10.1038/s41591-022-01717-2. Epub 2022 Apr 19.
7
Federated analysis of BRCA1 and BRCA2 variation in a Japanese cohort.
Cell Genom. 2022 Mar 9;2(3). doi: 10.1016/j.xgen.2022.100109.
9
The future of genomics in Ireland - focus on genomics for health.
HRB Open Res. 2020 Dec 4;3:89. doi: 10.12688/hrbopenres.13187.1. eCollection 2020.

本文引用的文献

2
Framework for responsible sharing of genomic and health-related data.
Hugo J. 2014 Dec;8(1):3. doi: 10.1186/s11568-014-0003-1. Epub 2014 Oct 17.
3
US president endorses "moonshot" effort to cure cancer.
BMJ. 2016 Jan 13;352:i213. doi: 10.1136/bmj.i213.
5
Toward understanding and exploiting tumor heterogeneity.
Nat Med. 2015 Aug;21(8):846-53. doi: 10.1038/nm.3915.
6
The NIH BD2K center for big data in translational genomics.
J Am Med Inform Assoc. 2015 Nov;22(6):1143-7. doi: 10.1093/jamia/ocv047. Epub 2015 Jul 13.
7
Data analysis: Create a cloud commons.
Nature. 2015 Jul 9;523(7559):149-51. doi: 10.1038/523149a.
8
Good laboratory practice for clinical next-generation sequencing informatics pipelines.
Nat Biotechnol. 2015 Jul;33(7):689-93. doi: 10.1038/nbt.3237.
9
The Human Phenotype Ontology: Semantic Unification of Common and Rare Disease.
Am J Hum Genet. 2015 Jul 2;97(1):111-24. doi: 10.1016/j.ajhg.2015.05.020. Epub 2015 Jun 25.
10
Are physicians prepared for whole genome sequencing? a qualitative analysis.
Clin Genet. 2016 Feb;89(2):228-34. doi: 10.1111/cge.12626. Epub 2015 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验