Suppr超能文献

鳃角金龟科(鞘翅目)的贝叶斯物种界定——先验选择和形态学的重要性

Bayesian species delimitation in Pleophylla chafers (Coleoptera) - the importance of prior choice and morphology.

作者信息

Eberle Jonas, Warnock Rachel C M, Ahrens Dirk

机构信息

Zoologisches Forschungsmuseum Alexander Koenig Bonn, Centre of Taxonomy and Evolutionary Research, Adenauerallee 160, 53113, Bonn, Germany.

Department of Entomology, Natural History Museum, London, SW7 5BD, UK.

出版信息

BMC Evol Biol. 2016 May 5;16:94. doi: 10.1186/s12862-016-0659-3.

Abstract

BACKGROUND

Defining species units can be challenging, especially during the earliest stages of speciation, when phylogenetic inference and delimitation methods may be compromised by incomplete lineage sorting (ILS) or secondary gene flow. Integrative approaches to taxonomy, which combine molecular and morphological evidence, have the potential to be valuable in such cases. In this study we investigated the South African scarab beetle genus Pleophylla using data collected from 110 individuals of eight putative morphospecies. The dataset included four molecular markers (cox1, 16S, rrnL, ITS1) and morphometric data based on male genital morphology. We applied a suite of molecular and morphological approaches to species delimitation, and implemented a novel Bayesian approach in the software iBPP, which enables continuous morphological trait and molecular data to be combined.

RESULTS

Traditional morphology-based species assignments were supported quantitatively by morphometric analyses of the male genitalia (eigenshape analysis, CVA, LDA). While the ITS1-based delineation was also broadly congruent with the morphospecies, the cox1 data resulted in over-splitting (GMYC modelling, haplotype networks, PTP, ABGD). In the most extreme case morphospecies shared identical haplotypes, which may be attributable to ILS based on statistical tests performed using the software JML. We found the strongest support for putative morphospecies based on phylogenetic evidence using the combined approach implemented in iBPP. However, support for putative species was sensitive to the use of alternative guide trees and alternative combinations of priors on the population size (θ) and rootage (τ 0 ) parameters, especially when the analysis was based on molecular or morphological data alone.

CONCLUSIONS

We demonstrate that continuous morphological trait data can be extremely valuable in assessing competing hypotheses to species delimitation. In particular, we show that the inclusion of morphological data in an integrative Bayesian framework can improve the resolution of inferred species units. However, we also demonstrate that this approach is extremely sensitive to guide tree and prior parameter choice. These parameters should be chosen with caution - if possible - based on independent empirical evidence, or careful sensitivity analyses should be performed to assess the robustness of results. Young species provide exemplars for investigating the mechanisms of speciation and for assessing the performance of tools used to delimit species on the basis of molecular and/or morphological evidence.

摘要

背景

定义物种单元可能具有挑战性,尤其是在物种形成的最初阶段,此时系统发育推断和界定方法可能会受到不完全谱系分选(ILS)或二次基因流的影响。综合分类方法,即将分子和形态学证据相结合,在这种情况下可能具有重要价值。在本研究中,我们使用从8个假定形态物种的110个个体收集的数据,对南非金龟子属Pleophylla进行了调查。数据集包括四个分子标记(cox1、16S、rrnL、ITS1)以及基于雄性生殖器形态的形态测量数据。我们应用了一系列分子和形态学方法进行物种界定,并在软件iBPP中实施了一种新颖的贝叶斯方法,该方法能够将连续的形态特征和分子数据相结合。

结果

基于雄性生殖器的形态测量分析(特征形状分析、CVA、LDA)从数量上支持了基于传统形态学的物种分类。虽然基于ITS1的界定也与形态物种大致一致,但cox1数据导致了过度分类(GMYC建模、单倍型网络、PTP、ABGD)。在最极端的情况下,形态物种共享相同的单倍型,这可能归因于使用软件JML进行的统计测试所显示的ILS。我们发现,使用iBPP中实施的综合方法,基于系统发育证据对假定形态物种的支持最为有力。然而,对假定物种的支持对使用替代引导树以及群体大小(θ)和根节点(τ0)参数上先验的替代组合非常敏感,尤其是当分析仅基于分子或形态学数据时。

结论

我们证明,连续的形态特征数据在评估物种界定的竞争假设时可能极具价值。特别是,我们表明在综合贝叶斯框架中纳入形态学数据可以提高推断物种单元的分辨率。然而,我们也证明这种方法对引导树和先验参数的选择极为敏感。这些参数应谨慎选择——如果可能的话——基于独立的经验证据,或者应进行仔细的敏感性分析以评估结果 的稳健性。年轻物种为研究物种形成机制以及评估基于分子和/或形态学证据界定物种的工具的性能提供了范例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2d4/4858874/e34598b390fe/12862_2016_659_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验