Department of Ecology and Evolutionary Biology, Yale University, , 21 Sachem Street, New Haven CT 06520, USA, Department of Ecology and Evolutionary Biology, The University of Michigan, , Ann Arbor, MI 48109, USA.
Proc Biol Sci. 2014 Jan 8;281(1777):20132765. doi: 10.1098/rspb.2013.2765. Print 2014 Feb 22.
Statistical species delimitation usually relies on singular data, primarily genetic, for detecting putative species and individual assignment to putative species. Given the variety of speciation mechanisms, singular data may not adequately represent the genetic, morphological and ecological diversity relevant to species delimitation. We describe a methodological framework combining multivariate and clustering techniques that uses genetic, morphological and ecological data to detect and assign individuals to putative species. Our approach recovers a similar number of species recognized using traditional, qualitative taxonomic approaches that are not detected when using purely genetic methods. Furthermore, our approach detects groupings that traditional, qualitative taxonomic approaches do not. This empirical test suggests that our approach to detecting and assigning individuals to putative species could be useful in species delimitation despite varying levels of differentiation across genetic, phenotypic and ecological axes. This work highlights a critical, and often overlooked, aspect of the process of statistical species delimitation-species detection and individual assignment. Irrespective of the species delimitation approach used, all downstream processing relies on how individuals are initially assigned, and the practices and statistical issues surrounding individual assignment warrant careful consideration.
统计物种界定通常依赖于单一数据,主要是遗传数据,用于检测潜在的物种和个体归属到潜在的物种。鉴于各种物种形成机制,单一数据可能无法充分代表与物种界定相关的遗传、形态和生态多样性。我们描述了一个结合多元和聚类技术的方法框架,该框架使用遗传、形态和生态数据来检测和分配个体到潜在的物种。我们的方法恢复了使用传统的、定性的分类方法识别的相似数量的物种,而这些物种在使用纯遗传方法时是检测不到的。此外,我们的方法还检测到了传统的定性分类方法无法检测到的分组。这项实证检验表明,尽管遗传、表型和生态轴上存在不同程度的分化,我们的方法仍然可以用于检测和分配个体到潜在的物种。这项工作强调了统计物种界定过程中的一个关键但经常被忽视的方面——物种检测和个体分配。无论使用哪种物种界定方法,所有下游处理都依赖于个体最初的分配方式,而个体分配的实践和统计问题值得仔细考虑。