精神医学研究的新工具:一个可扩展和可定制的平台,赋予数据驱动的智能手机研究能力。

New Tools for New Research in Psychiatry: A Scalable and Customizable Platform to Empower Data Driven Smartphone Research.

机构信息

Brigham and Women's Hospital, Department of Psychiatry, Harvard Medical School, Boston, MA, United States.

出版信息

JMIR Ment Health. 2016 May 5;3(2):e16. doi: 10.2196/mental.5165.

Abstract

BACKGROUND

A longstanding barrier to progress in psychiatry, both in clinical settings and research trials, has been the persistent difficulty of accurately and reliably quantifying disease phenotypes. Mobile phone technology combined with data science has the potential to offer medicine a wealth of additional information on disease phenotypes, but the large majority of existing smartphone apps are not intended for use as biomedical research platforms and, as such, do not generate research-quality data.

OBJECTIVE

Our aim is not the creation of yet another app per se but rather the establishment of a platform to collect research-quality smartphone raw sensor and usage pattern data. Our ultimate goal is to develop statistical, mathematical, and computational methodology to enable us and others to extract biomedical and clinical insights from smartphone data.

METHODS

We report on the development and early testing of Beiwe, a research platform featuring a study portal, smartphone app, database, and data modeling and analysis tools designed and developed specifically for transparent, customizable, and reproducible biomedical research use, in particular for the study of psychiatric and neurological disorders. We also outline a proposed study using the platform for patients with schizophrenia.

RESULTS

We demonstrate the passive data capabilities of the Beiwe platform and early results of its analytical capabilities.

CONCLUSIONS

Smartphone sensors and phone usage patterns, when coupled with appropriate statistical learning tools, are able to capture various social and behavioral manifestations of illnesses, in naturalistic settings, as lived and experienced by patients. The ubiquity of smartphones makes this type of moment-by-moment quantification of disease phenotypes highly scalable and, when integrated within a transparent research platform, presents tremendous opportunities for research, discovery, and patient health.

摘要

背景

在临床环境和研究试验中,精神病学进展的一个长期障碍一直是准确和可靠地量化疾病表型的持续困难。将移动电话技术与数据科学相结合,有可能为医学提供大量有关疾病表型的额外信息,但绝大多数现有的智能手机应用程序并非旨在用作生物医学研究平台,因此无法生成研究质量的数据。

目的

我们的目标不是单纯地创建另一个应用程序,而是建立一个平台来收集具有研究质量的智能手机原始传感器和使用模式数据。我们的最终目标是开发统计、数学和计算方法,使我们和其他人能够从智能手机数据中提取生物医学和临床见解。

方法

我们报告了 Beiwe 的开发和早期测试情况,Beiwe 是一个研究平台,具有研究门户、智能手机应用程序、数据库以及数据建模和分析工具,专为透明、可定制和可重复的生物医学研究使用而设计和开发,特别是用于研究精神和神经障碍。我们还概述了一项使用该平台对精神分裂症患者进行的研究。

结果

我们展示了 Beiwe 平台的被动数据功能以及其分析功能的早期结果。

结论

智能手机传感器和电话使用模式,结合适当的统计学习工具,能够在自然环境中捕捉到患者所经历的各种疾病的社会和行为表现。智能手机的普及使得这种对疾病表型的实时量化具有高度可扩展性,并且当它集成到透明的研究平台中时,为研究、发现和患者健康提供了巨大的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f56/4873624/1b6badcca4d0/mental_v3i2e16_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索