Suppr超能文献

自动化的自由言论分析可预测高危青年的精神病发病。

Automated analysis of free speech predicts psychosis onset in high-risk youths.

机构信息

Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY, USA; Division on Substance Abuse, New York State Psychiatric Institute, New York, NY, USA.

Department of computer Science, School of Sciences, Universidad de Buenos Aires , Buenos Aires, Argentina.

出版信息

NPJ Schizophr. 2015 Aug 26;1:15030. doi: 10.1038/npjschz.2015.30. eCollection 2015.

Abstract

BACKGROUND/OBJECTIVES: Psychiatry lacks the objective clinical tests routinely used in other specializations. Novel computerized methods to characterize complex behaviors such as speech could be used to identify and predict psychiatric illness in individuals.

AIMS

In this proof-of-principle study, our aim was to test automated speech analyses combined with Machine Learning to predict later psychosis onset in youths at clinical high-risk (CHR) for psychosis.

METHODS

Thirty-four CHR youths (11 females) had baseline interviews and were assessed quarterly for up to 2.5 years; five transitioned to psychosis. Using automated analysis, transcripts of interviews were evaluated for semantic and syntactic features predicting later psychosis onset. Speech features were fed into a convex hull classification algorithm with leave-one-subject-out cross-validation to assess their predictive value for psychosis outcome. The canonical correlation between the speech features and prodromal symptom ratings was computed.

RESULTS

Derived speech features included a Latent Semantic Analysis measure of semantic coherence and two syntactic markers of speech complexity: maximum phrase length and use of determiners (e.g., which). These speech features predicted later psychosis development with 100% accuracy, outperforming classification from clinical interviews. Speech features were significantly correlated with prodromal symptoms.

CONCLUSIONS

Findings support the utility of automated speech analysis to measure subtle, clinically relevant mental state changes in emergent psychosis. Recent developments in computer science, including natural language processing, could provide the foundation for future development of objective clinical tests for psychiatry.

摘要

背景/目的:精神病学缺乏其他专业中常规使用的客观临床测试。新颖的计算机化方法可以用来描述言语等复杂行为,以识别和预测个体的精神疾病。

目的

在这项原理验证研究中,我们的目的是测试自动化语音分析与机器学习相结合,以预测精神病高危(CHR)青少年的后期精神病发作。

方法

34 名 CHR 青少年(11 名女性)进行了基线访谈,并在最多 2.5 年内每季度进行评估;5 人转为精神病。使用自动化分析,对访谈记录进行语义和句法特征的评估,以预测后期精神病发作。将语音特征输入凸壳分类算法,并进行留一受试者交叉验证,以评估其对精神病结果的预测价值。计算语音特征与前驱症状评分之间的典型相关。

结果

得出的语音特征包括语义连贯性的潜在语义分析度量以及言语复杂性的两个句法标记:最大短语长度和限定词的使用(例如,哪个)。这些语音特征以 100%的准确率预测了后期精神病的发展,优于临床访谈的分类。语音特征与前驱症状显著相关。

结论

研究结果支持使用自动化语音分析来测量精神病发作中微妙的、临床相关的精神状态变化的实用性。计算机科学的最新进展,包括自然语言处理,可为精神病学的客观临床测试的未来发展提供基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb7d/4849456/0f43df83bf51/npjschz201530-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验