Suppr超能文献

基于单组分材料的正阻抗湿度传感器。

Positive impedance humidity sensors via single-component materials.

作者信息

Qian Jingwen, Peng Zhijian, Shen Zhenguang, Zhao Zengying, Zhang Guoliang, Fu Xiuli

机构信息

School of Engineering and Technology, China University of Geosciences, Beijing 100083, P. R. China.

State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China.

出版信息

Sci Rep. 2016 May 6;6:25574. doi: 10.1038/srep25574.

Abstract

Resistivity-type humidity sensors have been investigated with great interest due to the increasing demands in industry, agriculture and daily life. To date, most of the available humidity sensors have been fabricated based on negative humidity impedance, in which the electrical resistance decreases as the humidity increases, and only several carbon composites have been reported to present positive humidity impedance. However, here we fabricate positive impedance humidity sensors only via single-component WO3-x crystals. The resistance of WO3-x crystal sensors in response to relative humidity could be tuned from a negative to positive one by increasing the compositional x. And it was revealed that the positive humidity impedance was driven by the defects of oxygen vacancy. This result will extend the application field of humidity sensors, because the positive humidity impedance sensors would be more energy-efficient, easier to be miniaturized and electrically safer than their negative counterparts for their lower operation voltages. And we believe that constructing vacancies in semiconducting materials is a universal way to fabricate positive impedance humidity sensors.

摘要

由于工业、农业和日常生活中的需求不断增加,电阻式湿度传感器受到了广泛关注。迄今为止,大多数现有的湿度传感器都是基于负湿度阻抗制造的,即电阻随湿度增加而降低,只有少数碳复合材料被报道呈现正湿度阻抗。然而,在这里我们仅通过单组分WO3-x晶体制造正阻抗湿度传感器。通过增加组成x,WO3-x晶体传感器对相对湿度的响应电阻可以从负调为正。并且发现正湿度阻抗是由氧空位缺陷驱动的。这一结果将扩展湿度传感器的应用领域,因为正湿度阻抗传感器比负湿度阻抗传感器具有更低的工作电压,因此更节能、更易于小型化且电气安全性更高。我们相信在半导体材料中构建空位是制造正阻抗湿度传感器的通用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b99/4858685/726c07912fa5/srep25574-f1.jpg

相似文献

1
Positive impedance humidity sensors via single-component materials.
Sci Rep. 2016 May 6;6:25574. doi: 10.1038/srep25574.
2
Electrically Conductive Thin Films Based on Nanofibrillated Cellulose: Interactions with Water and Applications in Humidity Sensing.
ACS Appl Mater Interfaces. 2020 Aug 12;12(32):36437-36448. doi: 10.1021/acsami.0c09997. Epub 2020 Jul 30.
3
Humidity-Sensing Performance of 3DOM WO with Controllable Structural Modification.
ACS Appl Mater Interfaces. 2018 Jan 31;10(4):3776-3783. doi: 10.1021/acsami.7b17048. Epub 2018 Jan 16.
5
Temperature-Dependent Abnormal and Tunable p-n Response of Tungsten Oxide--Tin Oxide Based Gas Sensors.
ACS Appl Mater Interfaces. 2015 Nov 11;7(44):24887-94. doi: 10.1021/acsami.5b08211. Epub 2015 Nov 2.
6
Humidity-sensing properties of urchinlike CuO nanostructures modified by reduced graphene oxide.
ACS Appl Mater Interfaces. 2014 Mar 26;6(6):3888-95. doi: 10.1021/am404858z. Epub 2014 Mar 4.
8
Recent Developments in Fiber Optics Humidity Sensors.
Sensors (Basel). 2017 Apr 19;17(4):893. doi: 10.3390/s17040893.

引用本文的文献

1
Cellulose/TiO Humidity Sensor.
Sensors (Basel). 2025 Feb 28;25(5):1506. doi: 10.3390/s25051506.
3
Color Tunable, Lithography-Free Refractory Metal-Oxide Metacoatings with a Graded Refractive Index Profile.
Nano Lett. 2023 Apr 12;23(7):2601-2606. doi: 10.1021/acs.nanolett.2c04867. Epub 2023 Mar 30.
5
Enhanced moisture sensing properties of a nanostructured ZnO coated capacitive sensor.
RSC Adv. 2018 Jan 19;8(7):3839-3845. doi: 10.1039/c7ra10917b. eCollection 2018 Jan 16.
6
Improving gas sensing performance by oxygen vacancies in sub-stoichiometric WO.
RSC Adv. 2019 Mar 7;9(14):7723-7728. doi: 10.1039/c9ra00116f. eCollection 2019 Mar 6.
7
Flexible Ceramic Film Sensors for Free-Form Devices.
Sensors (Basel). 2022 Mar 3;22(5):1996. doi: 10.3390/s22051996.
8
A Highly Sensitive FET-Type Humidity Sensor with Inkjet-Printed Pt-InO Nanoparticles at Room Temperature.
Nanoscale Res Lett. 2020 Oct 14;15(1):198. doi: 10.1186/s11671-020-03426-6.

本文引用的文献

1
Spectroscopic investigation of the mechanism of photocatalysis.
Molecules. 2014 Nov 7;19(11):18248-67. doi: 10.3390/molecules191118248.
2
Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations.
Acc Chem Res. 2014 Nov 18;47(11):3233-41. doi: 10.1021/ar4002944. Epub 2014 May 14.
3
K-enriched WO3 nanobundles: high electrical conductivity and photocurrent with controlled polarity.
ACS Appl Mater Interfaces. 2013 Jun 12;5(11):4731-8. doi: 10.1021/am303253p. Epub 2013 May 16.
4
Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties.
Inorg Chem. 2012 Apr 16;51(8):4763-71. doi: 10.1021/ic300049j. Epub 2012 Mar 23.
5
The oxygen vacancy in crystal phases of WO(3).
J Phys Chem B. 2005 Mar 3;109(8):3146-56. doi: 10.1021/jp045655r.
6
Oxygen vacancies as active sites for water dissociation on rutile TiO(2)(110).
Phys Rev Lett. 2001 Dec 24;87(26):266104. doi: 10.1103/PhysRevLett.87.266104. Epub 2001 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验