Toshiba Research Europe Limited, Cambridge Research Laboratory, 208 Science Park, Milton Road, Cambridge CB4 0GZ, UK.
Toshiba Research Europe Limited, Cambridge Research Laboratory, 208 Science Park, Milton Road, Cambridge CB4 0GZ, UK.; Department of Engineering, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge CB3 0FA, UK.
Sci Adv. 2016 Apr 22;2(4):e1501256. doi: 10.1126/sciadv.1501256. eCollection 2016 Apr.
The generation of coherent and indistinguishable single photons is a critical step for photonic quantum technologies in information processing and metrology. A promising system is the resonant optical excitation of solid-state emitters embedded in wavelength-scale three-dimensional cavities. However, the challenge here is to reject the unwanted excitation to a level below the quantum signal. We demonstrate this using coherent photon scattering from a quantum dot in a micropillar. The cavity is shown to enhance the fraction of light that is resonantly scattered toward unity, generating antibunched indistinguishable photons that are 16 times narrower than the time-bandwidth limit, even when the transition is near saturation. Finally, deterministic excitation is used to create two-photon N00N states with which we make superresolving phase measurements in a photonic circuit.
相干且不可分辨的单光子的产生是光子量子信息技术在信息处理和计量学中的关键步骤。一个很有前途的系统是在波长尺度的三维腔中嵌入固态发射器的共振光激发。然而,这里的挑战是将不需要的激发降低到量子信号以下的水平。我们使用量子点在微柱中的相干光子散射来证明这一点。结果表明,该腔增强了共振散射到单一方向的光的分数,产生了反聚束的不可分辨光子,其线宽比时间带宽极限窄 16 倍,即使跃迁接近饱和也是如此。最后,确定性激发用于创建双光子 N00N 态,我们使用它在光子电路中进行超分辨相位测量。