Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Singapore 138648, Singapore Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Singapore 138648, Singapore.
Bioinformatics. 2016 Aug 15;32(16):2473-80. doi: 10.1093/bioinformatics/btw191. Epub 2016 Apr 10.
Flow cytometry (FCM) is widely used in both clinical and basic research to characterize cell phenotypes and functions. The latest FCM instruments analyze up to 20 markers of individual cells, producing high-dimensional data. This requires the use of the latest clustering and dimensionality reduction techniques to automatically segregate cell sub-populations in an unbiased manner. However, automated analyses may lead to false discoveries due to inter-sample differences in quality and properties.
We present an R package, flowAI, containing two methods to clean FCM files from unwanted events: (i) an automatic method that adopts algorithms for the detection of anomalies and (ii) an interactive method with a graphical user interface implemented into an R shiny application. The general approach behind the two methods consists of three key steps to check and remove suspected anomalies that derive from (i) abrupt changes in the flow rate, (ii) instability of signal acquisition and (iii) outliers in the lower limit and margin events in the upper limit of the dynamic range. For each file analyzed our software generates a summary of the quality assessment from the aforementioned steps. The software presented is an intuitive solution seeking to improve the results not only of manual but also and in particular of automatic analysis on FCM data.
R source code available through Bioconductor: http://bioconductor.org/packages/flowAI/ CONTACTS: mongianni1@gmail.com or Anis_Larbi@immunol.a-star.edu.sg
Supplementary data are available at Bioinformatics online.
流式细胞术(FCM)广泛应用于临床和基础研究中,用于描述细胞表型和功能。最新的 FCM 仪器可以分析单个细胞多达 20 个标志物,产生高维数据。这需要使用最新的聚类和降维技术,以无偏倚的方式自动分离细胞亚群。然而,由于样本间质量和特性的差异,自动化分析可能会导致假发现。
我们提出了一个 R 包 flowAI,其中包含两种从 FCM 文件中清除不需要的事件的方法:(i)一种采用异常检测算法的自动方法,以及(ii)一种具有图形用户界面的交互式方法,实现为 R shiny 应用程序。两种方法背后的一般方法包括三个关键步骤,用于检查和删除可能源自(i)流速的突然变化、(ii)信号采集的不稳定性以及(iii)下限和上限动态范围中边缘事件的异常。对于分析的每个文件,我们的软件都会生成来自上述步骤的质量评估摘要。该软件是一个直观的解决方案,旨在不仅提高手动分析,而且特别是自动分析 FCM 数据的结果。
R 源代码可通过 Bioconductor 获得:http://bioconductor.org/packages/flowAI/
mongianni1@gmail.com 或 Anis_Larbi@immunol.a-star.edu.sg
补充数据可在 Bioinformatics 在线获得。