Suppr超能文献

SPADEVizR:一个用于SPADE结果可视化、分析和整合的R包。

SPADEVizR: an R package for visualization, analysis and integration of SPADE results.

作者信息

Gautreau Guillaume, Pejoski David, Le Grand Roger, Cosma Antonio, Beignon Anne-Sophie, Tchitchek Nicolas

出版信息

Bioinformatics. 2017 Mar 1;33(5):779-781. doi: 10.1093/bioinformatics/btw708.

Abstract

MOTIVATION

Flow, hyperspectral and mass cytometry are experimental techniques measuring cell marker expressions at the single cell level. The recent increase of the number of markers simultaneously measurable has led to the development of new automatic gating algorithms. Especially, the SPADE algorithm has been proposed as a novel way to identify clusters of cells having similar phenotypes in high-dimensional cytometry data. While SPADE or other cell clustering algorithms are powerful approaches, complementary analysis features are needed to better characterize the identified cell clusters.

RESULTS

We have developed SPADEVizR, an R package designed for the visualization, analysis and integration of cell clustering results. The available statistical methods allow highlighting cell clusters with relevant biological behaviors or integrating them with additional biological variables. Moreover, several visualization methods are available to better characterize the cell clusters, such as volcano plots, streamgraphs, parallel coordinates, heatmaps, or distograms. SPADEVizR can also generate linear, Cox or random forest models to predict biological outcomes, based on the cell cluster abundances. Additionally, SPADEVizR has several features allowing to quantify and to visualize the quality of the cell clustering results. These analysis features are essential to better interpret the behaviors and phenotypes of the identified cell clusters. Importantly, SPADEVizR can handle clustering results from other algorithms than SPADE.

AVAILABILITY AND IMPLEMENTATION

SPADEVizR is distributed under the GPL-3 license and is available at https://github.com/tchitchek-lab/SPADEVizR .

CONTACT

nicolas.tchitchek@gmail.com.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

流式细胞术、高光谱成像和质谱细胞术是在单细胞水平测量细胞标志物表达的实验技术。近年来,可同时测量的标志物数量不断增加,促使了新的自动门控算法的发展。特别是,SPADE算法被提出作为一种在高维细胞术数据中识别具有相似表型的细胞簇的新方法。虽然SPADE或其他细胞聚类算法是强大的方法,但仍需要互补的分析功能来更好地表征已识别的细胞簇。

结果

我们开发了SPADEVizR,这是一个用于细胞聚类结果可视化、分析和整合的R包。现有的统计方法能够突出显示具有相关生物学行为的细胞簇,或将它们与其他生物学变量进行整合。此外,还有几种可视化方法可用于更好地表征细胞簇,如火山图、流图、平行坐标图、热图或距离直方图。SPADEVizR还可以基于细胞簇丰度生成线性、Cox或随机森林模型来预测生物学结果。此外,SPADEVizR具有多个功能,可量化和可视化细胞聚类结果的质量。这些分析功能对于更好地解释已识别细胞簇的行为和表型至关重要。重要的是,SPADEVizR可以处理来自SPADE以外其他算法的聚类结果。

可用性和实现

SPADEVizR根据GPL-3许可分发,可在https://github.com/tchitchek-lab/SPADEVizR获取。

联系方式

nicolas.tchitchek@gmail.com

补充信息

补充数据可在《生物信息学》在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5713/5408860/a8010f8a2dbe/btw708f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验