Ghandi Mahmoud, Mohammad-Noori Morteza, Ghareghani Narges, Lee Dongwon, Garraway Levi, Beer Michael A
The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran.
Bioinformatics. 2016 Jul 15;32(14):2205-7. doi: 10.1093/bioinformatics/btw203. Epub 2016 Apr 19.
We present a new R package for training gapped-kmer SVM classifiers for DNA and protein sequences. We describe an improved algorithm for kernel matrix calculation that speeds run time by about 2 to 5-fold over our original gkmSVM algorithm. This package supports several sequence kernels, including: gkmSVM, kmer-SVM, mismatch kernel and wildcard kernel.
gkmSVM package is freely available through the Comprehensive R Archive Network (CRAN), for Linux, Mac OS and Windows platforms. The C ++ implementation is available at www.beerlab.org/gkmsvm
mghandi@gmail.com or mbeer@jhu.edu
Supplementary data are available at Bioinformatics online.
我们展示了一个新的R包,用于训练针对DNA和蛋白质序列的带间隙k-mer支持向量机(SVM)分类器。我们描述了一种改进的核矩阵计算算法,其运行时间比我们原来的gkmSVM算法快约2至5倍。该包支持多种序列核,包括:gkmSVM、kmer-SVM、错配核和通配符核。
gkmSVM包可通过综合R存档网络(CRAN)免费获取,适用于Linux、Mac OS和Windows平台。C++实现可在www.beerlab.org/gkmsvm获取。
mghandi@gmail.com或mbeer@jhu.edu
补充数据可在《生物信息学》在线获取。