Suppr超能文献

来自解淀粉芽孢杆菌G1的麦芽糖生成淀粉酶的计算对接、分子动力学模拟和亚位点结构分析为底物和产物特异性提供了见解。

Computational docking, molecular dynamics simulation and subsite structure analysis of a maltogenic amylase from Bacillus lehensis G1 provide insights into substrate and product specificity.

作者信息

Manas Nor Hasmaliana Abdul, Bakar Farah Diba Abu, Illias Rosli Md

机构信息

Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.

School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.

出版信息

J Mol Graph Model. 2016 Jun;67:1-13. doi: 10.1016/j.jmgm.2016.04.004. Epub 2016 Apr 23.

Abstract

Maltogenic amylase (MAG1) from Bacillus lehensis G1 displayed the highest hydrolysis activity on β-cyclodextrin (β-CD) to produce maltose as a main product and exhibited high transglycosylation activity on malto-oligosaccharides with polymerization degree of three and above. These substrate and product specificities of MAG1 were elucidated from structural point of view in this study. A three-dimensional structure of MAG1 was constructed using homology modeling. Docking of β-CD and malto-oligosaccharides was then performed in the MAG1 active site. An aromatic platform in the active site was identified which is responsible in substrate recognition especially in determining the enzyme's preference toward β-CD. Molecular dynamics (MD) simulation showed MAG1 structure is most stable when docked with β-CD and least stable when docked with maltose. The docking analysis and MD simulation showed that the main subsites for substrate stabilization in the active site are -2, -1, +1 and +2. A bulky residue, Trp359 at the +2 subsite was identified to cause steric interference to the bound linear malto-oligosaccharides thus prevented it to occupy subsite +3, which can only be reached by a highly bent glucose molecule such as β-CD. The resulted modes of binding from docking simulation show a good correlation with the experimentally determined hydrolysis pattern. The subsite structure generated from this study led to a possible mode of action that revealed how maltose was mainly produced during hydrolysis. Furthermore, maltose only occupies subsite +1 and +2, therefore could not be hydrolyzed or transglycosylated by the enzyme. This important knowledge has paved the way for a novel structure-based molecular design for modulation of its catalytic activities.

摘要

来自芽孢杆菌G1的产麦芽淀粉酶(MAG1)对β-环糊精(β-CD)表现出最高的水解活性,以麦芽糖作为主要产物,并且对聚合度为三及以上的麦芽寡糖表现出高转糖基活性。本研究从结构角度阐明了MAG1的这些底物和产物特异性。使用同源建模构建了MAG1的三维结构。然后在MAG1活性位点进行β-CD和麦芽寡糖的对接。在活性位点鉴定出一个芳香平台,其负责底物识别,特别是在确定酶对β-CD的偏好方面。分子动力学(MD)模拟表明,MAG1与β-CD对接时结构最稳定,与麦芽糖对接时最不稳定。对接分析和MD模拟表明,活性位点中用于底物稳定的主要亚位点是-2、-1、+1和+2。在+2亚位点鉴定出一个大的残基Trp359,它对结合的线性麦芽寡糖造成空间干扰,从而阻止其占据亚位点+3,只有高度弯曲的葡萄糖分子(如β-CD)才能到达该位点。对接模拟产生的结合模式与实验确定的水解模式显示出良好的相关性。本研究产生的亚位点结构导致了一种可能的作用模式,揭示了水解过程中麦芽糖是如何主要产生的。此外,麦芽糖仅占据亚位点+1和+2,因此不能被该酶水解或转糖基化。这一重要知识为基于结构的新型分子设计以调节其催化活性铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验