Suppr超能文献

巨噬细胞通过直接物理黏附和机械牵拉介导脑血管破裂修复。

Macrophages Mediate the Repair of Brain Vascular Rupture through Direct Physical Adhesion and Mechanical Traction.

机构信息

Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China.

Department of Endodontics and Operative Dentistry, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, 401147 Chongqing, China.

出版信息

Immunity. 2016 May 17;44(5):1162-76. doi: 10.1016/j.immuni.2016.03.008. Epub 2016 May 3.

Abstract

Hemorrhagic stroke and brain microbleeds are caused by cerebrovascular ruptures. Fast repair of such ruptures is the most promising therapeutic approach. Due to a lack of high-resolution in vivo real-time studies, the dynamic cellular events involved in cerebrovascular repair remain unknown. Here, we have developed a cerebrovascular rupture system in zebrafish by using multi-photon laser, which generates a lesion with two endothelial ends. In vivo time-lapse imaging showed that a macrophage arrived at the lesion and extended filopodia or lamellipodia to physically adhere to both endothelial ends. This macrophage generated mechanical traction forces to pull the endothelial ends and facilitate their ligation, thus mediating the repair of the rupture. Both depolymerization of microfilaments and inhibition of phosphatidylinositide 3-kinase or Rac1 activity disrupted macrophage-endothelial adhesion and impaired cerebrovascular repair. Our study reveals a hitherto unexpected role for macrophages in mediating repair of cerebrovascular ruptures through direct physical adhesion and mechanical traction.

摘要

脑出血和脑微出血是由脑血管破裂引起的。快速修复这些破裂是最有前途的治疗方法。由于缺乏高分辨率的体内实时研究,涉及脑血管修复的动态细胞事件仍然未知。在这里,我们通过使用多光子激光在斑马鱼中开发了一种脑血管破裂系统,该系统可产生具有两个内皮末端的损伤。体内延时成像显示,巨噬细胞到达病变部位并延伸丝状伪足或片状伪足以物理方式附着在内皮末端。这种巨噬细胞产生机械牵引力来拉动内皮末端并促进它们的连接,从而介导破裂的修复。微丝的解聚和磷脂酰肌醇 3-激酶或 Rac1 活性的抑制均破坏了巨噬细胞-内皮细胞的黏附,损害了脑血管的修复。我们的研究揭示了巨噬细胞通过直接物理黏附和机械牵引力来介导脑血管破裂修复的一个迄今未被发现的作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验