Joshi Ankita, Ramachandran C N
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India.
Phys Chem Chem Phys. 2016 May 18;18(20):14040-5. doi: 10.1039/c6cp00326e.
A new molecular system comprising the non-covalently functionalized complexes of single walled (6,6) carbon nanotubes (SWCNTs) of finite length with indigo is proposed based on the dispersion-corrected density functional theory calculations. In the complexes viz. the dyad and triad, indigo is wrapped over carbon nanotubes in the ratio of 1 : 1 and 2 : 1, respectively. A comprehensive study of stabilization energy, ionization energy, electron affinity, the energy gap between the highest occupied and lowest unoccupied molecular orbitals (ΔELUMO-HOMO), and absorption spectra unravels the structure-property relationship of the complexes. The energy gap of ∼1 eV between the HOMO and the LUMO of the complexes suggests that they can be semiconductive. The energy levels of the frontier molecular orbitals of indigo and CNT suggest the possibility of the photoinduced charge transfer between them. Using the charge hopping rate based on Marcus theory, a hole mobility as high as 8.77 cm(2) V(-1) s(-1) is obtained for the dyad. For both the dyad and triad, a higher value of hole mobility than electron mobility is observed, thereby suggesting them to be useful for p-type semiconductor devices. The time-dependent density functional theory (TD-DFT) calculations predict that the absorption of indigo-CNT complexes occurs in the visible and the near-infrared regions finding applications in organic light emitting diodes (OLEDs). Furthermore, the effects of the length and the capping of CNTs as well as the orientation of indigo over the CNTs on the charge transport properties are also discussed.
基于色散校正密度泛函理论计算,提出了一种新的分子体系,该体系由有限长度的单壁(6,6)碳纳米管(SWCNT)与靛蓝的非共价功能化复合物组成。在这些复合物中,即二元复合物和三元复合物,靛蓝分别以1∶1和2∶1的比例包裹在碳纳米管上。对稳定能、电离能、电子亲和能、最高占据分子轨道和最低未占据分子轨道之间的能隙(ΔELUMO-HOMO)以及吸收光谱进行了全面研究,揭示了这些复合物的结构-性质关系。复合物的HOMO和LUMO之间约1 eV的能隙表明它们可以是半导体。靛蓝和碳纳米管的前沿分子轨道的能级表明它们之间存在光诱导电荷转移的可能性。利用基于马库斯理论的电荷跳跃率,二元复合物的空穴迁移率高达8.77 cm² V⁻¹ s⁻¹。对于二元复合物和三元复合物,均观察到空穴迁移率的值高于电子迁移率,因此表明它们可用于p型半导体器件。含时密度泛函理论(TD-DFT)计算预测,靛蓝-碳纳米管复合物的吸收发生在可见光和近红外区域,可应用于有机发光二极管(OLED)。此外,还讨论了碳纳米管的长度和封端以及靛蓝在碳纳米管上的取向对电荷传输性质的影响。