Zeng Qingxin, Yan Tingting, Wang Kai, Gong Yinyan, Zhou Yong, Huang Yongli, Sun Chang Q, Zou Bo
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China.
Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China.
Phys Chem Chem Phys. 2016 May 18;18(20):14046-54. doi: 10.1039/c6cp00648e.
In situ Raman spectroscopy revealed that transiting H2O/NaX (∼64) solutions into an ice VI phase and then into an ice VII phase at a temperature of 298 K requires excessive pressures with respect to pure water. The increase of the critical pressures varies with the solute type in the Hofmeister series order: X = I > Br > Cl > F ∼ 0. The results suggest that the solute hydration creates electric fields that lengthen and soften the O:H nonbond and meanwhile shorten and stiffen the H-O bond through O-O Coulomb repulsion. Compression, however, does the opposite to solute electrification upon the O:H-O bond relaxation. Therefore, compression of the aqueous solutions recovers the electrification-deformed O:H-O bond first and then proceeds to the phase transitions, which requires excessive energy for the same sequence of phase transitions. Ice exclusion of solute disperses the frequencies of characteristic phonons and the critical pressures with unlikely new bond formation.
原位拉曼光谱表明,在298 K的温度下,将正在转变的H2O/NaX(~64)溶液转变为冰VI相,然后再转变为冰VII相,相对于纯水而言需要过高的压力。临界压力的增加随霍夫迈斯特序列顺序中的溶质类型而变化:X = I > Br > Cl > F ∼ 0。结果表明,溶质水合作用产生电场,通过O-O库仑排斥作用拉长并软化O:H非键,同时缩短并硬化H-O键。然而,在O:H-O键弛豫时,压缩对溶质带电的作用则相反。因此,水溶液的压缩首先恢复因带电而变形的O:H-O键,然后再进行相变,而相同的相变序列需要过多的能量。溶质的冰排除分散了特征声子的频率和临界压力,且不太可能形成新键。