Department of Physics, College of Science, Swansea University , Singleton Park, Swansea SA2 8PP, United Kingdom.
Struct Dyn. 2016 Apr 20;3(2):023612. doi: 10.1063/1.4947098. eCollection 2016 Mar.
Femtosecond electron microscopy produces real-space images of matter in a series of ultrafast snapshots. Pulses of electrons self-disperse under space-charge broadening, so without compression, the ideal operation mode is a single electron per pulse. Here, we demonstrate femtosecond single-electron point projection microscopy (fs-ePPM) in a laser-pump fs-e-probe configuration. The electrons have an energy of only 150 eV and take tens of picoseconds to propagate to the object under study. Nonetheless, we achieve a temporal resolution with a standard deviation of 114 fs (equivalent to a full-width at half-maximum of 269 ± 40 fs) combined with a spatial resolution of 100 nm, applied to a localized region of charge at the apex of a nanoscale metal tip induced by 30 fs 800 nm laser pulses at 50 kHz. These observations demonstrate real-space imaging of reversible processes, such as tracking charge distributions, is feasible whilst maintaining femtosecond resolution. Our findings could find application as a characterization method, which, depending on geometry, could resolve tens of femtoseconds and tens of nanometres. Dynamically imaging electric and magnetic fields and charge distributions on sub-micron length scales opens new avenues of ultrafast dynamics. Furthermore, through the use of active compression, such pulses are an ideal seed for few-femtosecond to attosecond imaging applications which will access sub-optical cycle processes in nanoplasmonics.
飞秒电子显微镜通过一系列超快快照产生物质的实空间图像。电子在空间电荷展宽下自弥散,因此在没有压缩的情况下,理想的操作模式是每个脉冲一个电子。在这里,我们在激光泵浦飞秒电子探针配置中演示了飞秒单电子点投影显微镜(fs-ePPM)。电子的能量只有 150eV,传播到研究对象需要几十皮秒。尽管如此,我们还是实现了 114fs 的时间分辨率(相当于 269±40fs 的半峰全宽),并结合 100nm 的空间分辨率,应用于由 30fs 800nm 激光脉冲在 50kHz 下在纳米级金属尖端的尖端诱导的局部电荷区域。这些观察结果表明,对可逆过程进行实空间成像,例如跟踪电荷分布,是可行的,同时保持飞秒分辨率。我们的发现可以作为一种表征方法,根据几何形状,该方法可以分辨几十飞秒和几十纳米。在亚微米长度尺度上动态成像电场、磁场和电荷分布为超快动力学开辟了新途径。此外,通过使用主动压缩,这些脉冲是用于几飞秒到阿秒成像应用的理想种子,这些应用将在纳米等离子体中访问亚光周期过程。