Hassan Mohammed T, Liu Haihua, Baskin John Spencer, Zewail Ahmed H
Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125.
Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125
Proc Natl Acad Sci U S A. 2015 Oct 20;112(42):12944-9. doi: 10.1073/pnas.1517942112. Epub 2015 Oct 5.
Ultrafast electron microscopy (UEM) is a pivotal tool for imaging of nanoscale structural dynamics with subparticle resolution on the time scale of atomic motion. Photon-induced near-field electron microscopy (PINEM), a key UEM technique, involves the detection of electrons that have gained energy from a femtosecond optical pulse via photon-electron coupling on nanostructures. PINEM has been applied in various fields of study, from materials science to biological imaging, exploiting the unique spatial, energy, and temporal characteristics of the PINEM electrons gained by interaction with a "single" light pulse. The further potential of photon-gated PINEM electrons in probing ultrafast dynamics of matter and the optical gating of electrons by invoking a "second" optical pulse has previously been proposed and examined theoretically in our group. Here, we experimentally demonstrate this photon-gating technique, and, through diffraction, visualize the phase transition dynamics in vanadium dioxide nanoparticles. With optical gating of PINEM electrons, imaging temporal resolution was improved by a factor of 3 or better, being limited only by the optical pulse widths. This work enables the combination of the high spatial resolution of electron microscopy and the ultrafast temporal response of the optical pulses, which provides a promising approach to attain the resolution of few femtoseconds and attoseconds in UEM.
超快电子显微镜(UEM)是一种关键工具,可在原子运动的时间尺度上以亚粒子分辨率对纳米级结构动力学进行成像。光子诱导近场电子显微镜(PINEM)是一种关键的UEM技术,它涉及检测通过纳米结构上的光子 - 电子耦合从飞秒光脉冲获得能量的电子。PINEM已应用于从材料科学到生物成像的各个研究领域,利用与“单个”光脉冲相互作用获得的PINEM电子独特的空间、能量和时间特性。我们小组之前曾从理论上提出并研究了光子门控PINEM电子在探测物质超快动力学以及通过引入“第二个”光脉冲对电子进行光学门控方面的进一步潜力。在此,我们通过实验证明了这种光子门控技术,并通过衍射可视化了二氧化钒纳米颗粒中的相变动力学。通过对PINEM电子进行光学门控,成像时间分辨率提高了3倍或更好,仅受光脉冲宽度限制。这项工作实现了电子显微镜的高空间分辨率与光脉冲超快时间响应的结合,为在UEM中实现飞秒和阿秒级分辨率提供了一种有前景的方法。