Institute of Macromolecular Chemistry , AS CR, Heyrovsky Sq. 2, Prague, Prague 6, 162 06, Czech Republic.
ISIS-STFC, Rutherford Appleton Laboratory, Chilton, OX11 0QX Oxon United Kingdom.
Langmuir. 2016 May 31;32(21):5314-23. doi: 10.1021/acs.langmuir.6b00284. Epub 2016 May 18.
In this study, we report detailed information on the internal structure of PNIPAM-b-PEG-b-PNIPAM nanoparticles formed from self-assembly in aqueous solutions upon increase in temperature. NMR spectroscopy, light scattering, and small-angle neutron scattering (SANS) were used to monitor different stages of nanoparticle formation as a function of temperature, providing insight into the fundamental processes involved. The presence of PEG in a copolymer structure significantly affects the formation of nanoparticles, making their transition to occur over a broader temperature range. The crucial parameter that controls the transition is the ratio of PEG/PNIPAM. For pure PNIPAM, the transition is sharp; the higher the PEG/PNIPAM ratio results in a broader transition. This behavior is explained by different mechanisms of PNIPAM block incorporation during nanoparticle formation at different PEG/PNIPAM ratios. Contrast variation experiments using SANS show that the structure of nanoparticles above cloud point temperatures for PNIPAM-b-PEG-b-PNIPAM copolymers is drastically different from the structure of PNIPAM mesoglobules. In contrast with pure PNIPAM mesoglobules, where solidlike particles and chain network with a mesh size of 1-3 nm are present, nanoparticles formed from PNIPAM-b-PEG-b-PNIPAM copolymers have nonuniform structure with "frozen" areas interconnected by single chains in Gaussian conformation. SANS data with deuterated "invisible" PEG blocks imply that PEG is uniformly distributed inside of a nanoparticle. It is kinetically flexible PEG blocks which affect the nanoparticle formation by prevention of PNIPAM microphase separation.
在这项研究中,我们报告了在水溶液中自组装形成 PNIPAM-b-PEG-b-PNIPAM 纳米粒子的内部结构的详细信息,这是在温度升高的情况下发生的。NMR 光谱、光散射和小角中子散射(SANS)被用于监测纳米粒子形成的不同阶段作为温度的函数,深入了解所涉及的基本过程。PEG 在共聚物结构中的存在显著影响纳米粒子的形成,使它们的转变在更宽的温度范围内发生。控制转变的关键参数是 PEG/PNIPAM 的比例。对于纯 PNIPAM,转变是急剧的;PEG/PNIPAM 比例越高,转变越宽。这种行为可以通过在不同 PEG/PNIPAM 比例下形成纳米粒子时 PNIPAM 嵌段的不同掺入机制来解释。使用 SANS 的对比变化实验表明,PNIPAM-b-PEG-b-PNIPAM 共聚物在浊点温度以上的纳米粒子的结构与 PNIPAM 介晶球的结构有很大的不同。与纯 PNIPAM 介晶球不同,其中存在固态颗粒和具有 1-3nm 网格尺寸的链网络,由 PNIPAM-b-PEG-b-PNIPAM 共聚物形成的纳米粒子具有非均匀结构,“冻结”区域由处于高斯构象的单链相互连接。带有氘化“不可见”PEG 块的 SANS 数据表明,PEG 在纳米粒子内部均匀分布。是动力学灵活的 PEG 块通过阻止 PNIPAM 微相分离来影响纳米粒子的形成。