State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China , Chengdu, Sichuan 610054, P. R. China.
Department of NanoEngineering, University of California, San Diego , 9500 Gilman Drive, Mail Code 0448, La Jolla, California 92093-0448, United States.
ACS Appl Mater Interfaces. 2016 Jun 1;8(21):13659-68. doi: 10.1021/acsami.6b02399. Epub 2016 May 17.
By using first-principles electronic structure calculations, we explored the possibility of producing two-dimensional electron gas (2DEG) at the polar/polar (LaO)(+)/(BO2)(+) interface in the LaAlO3/A(+)B(5+)O3 (A = Na and K, B = Nb and Ta) heterostructures (HS). Unlike the prototype polar/nonpolar LaAlO3/SrTiO3 HS system where there exists a least film thickness of four LaAlO3 unit cells to have an insulator-to-metal transition, we found that the polar/polar LaAlO3/A(+)B(5+)O3 HS systems are intrinsically conducting at their interfaces without an insulator-to-metal transition. The interfacial charge carrier densities of these polar/polar HS systems are on the order of 10(14) cm(-2), much larger than that of the LaAlO3/SrTiO3 system. This is mainly attributed to two donor layers, i.e., (LaO)(+) and (BO2)(+) (B = Nb and Ta), in the polar/polar LaAlO3/A(+)B(5+)O3 systems, while only one (LaO)(+) donor layer in the polar/nonpolar LaAlO3/SrTiO3 system. In addition, it is expected that, due to less localized Nb 4d and Ta 5d orbitals with respect to Ti 3d orbitals, these LaAlO3/A(+)B(5+)O3 HS systems can exhibit potentially higher electron mobility because of their smaller electron effective mass than that in the LaAlO3/SrTiO3 system. Our results demonstrate that the electronic reconstruction at the polar/polar interface could be an alternative way to produce superior 2DEG in the perovskite-oxide-based HS systems.
通过第一性原理电子结构计算,我们探索了在 LaAlO3/A(+)B(5+)O3(A = Na 和 K,B = Nb 和 Ta)异质结构(HS)中,极性/极性(LaO)(+)/(BO2)(+)界面产生二维电子气(2DEG)的可能性。与存在最小厚度为四个 LaAlO3 单元的原型极性/非极性 LaAlO3/SrTiO3 HS 系统不同,该系统存在绝缘-金属转变,我们发现极性/极性 LaAlO3/A(+)B(5+)O3 HS 系统在其界面处本质上是导电的,不存在绝缘-金属转变。这些极性/极性 HS 系统的界面载流子密度在 10(14) cm(-2)量级,远大于 LaAlO3/SrTiO3 系统。这主要归因于极性/极性 LaAlO3/A(+)B(5+)O3 系统中的两个施主层,即(LaO)(+)和(BO2)(+)(B = Nb 和 Ta),而极性/非极性 LaAlO3/SrTiO3 系统中只有一个(LaO)(+)施主层。此外,由于 Nb 4d 和 Ta 5d 轨道比 Ti 3d 轨道更不易定域化,预计这些 LaAlO3/A(+)B(5+)O3 HS 系统由于其电子有效质量较小,可能具有比 LaAlO3/SrTiO3 系统更高的电子迁移率。我们的结果表明,极性/极性界面的电子重构可能是在钙钛矿氧化物基 HS 系统中产生优越 2DEG 的另一种方法。