Suppr超能文献

个体发生轨迹的概念框架:平行运输允许识别和可视化纯变形模式。

The conceptual framework of ontogenetic trajectories: parallel transport allows the recognition and visualization of pure deformation patterns.

作者信息

Piras P, Teresi L, Traversetti L, Varano V, Gabriele S, Kotsakis T, Raia P, Puddu P E, Scalici M

机构信息

Dipartimento di Scienze, Università Roma Tre, Rome, Italy.

Center for Evolutionary Ecology, Università Roma Tre, Rome, Italy.

出版信息

Evol Dev. 2016 May;18(3):182-200. doi: 10.1111/ede.12186.

Abstract

Ontogeny is usually studied by analyzing a deformation series spanning over juvenile to adult shapes. In geometric morphometrics, this approach implies applying generalized Procrustes analysis coupled with principal component analysis on multiple individuals or multiple species datasets. The trouble with such a procedure is that it mixes intra- and inter-group variation. While MANCOVA models are relevant statistical/mathematical tools to draw inferences about the similarities of trajectories, if one wants to observe and interpret the morphological deformation alone by filtering inter-group variability, a particular tool, namely parallel transport, is necessary. In the context of ontogenetic trajectories, one should firstly perform separate multivariate regressions between shape and size, using regression predictions to estimate within-group deformations relative to the smallest individuals. These deformations are then applied to a common reference (the mean of per-group smallest individuals). The estimation of deformations can be performed on the Riemannian manifold by using sophisticated connection metrics. Nevertheless, parallel transport can be effectively achieved by estimating deformations in the Euclidean space via ordinary Procrustes analysis. This approach proved very useful in comparing ontogenetic trajectories of species presenting large morphological differences at early developmental stages.

摘要

个体发育通常通过分析跨越幼年到成年形态的变形序列来进行研究。在几何形态计量学中,这种方法意味着对多个个体或多个物种数据集应用广义普罗克汝斯分析并结合主成分分析。这种方法的问题在于它混合了组内和组间变异。虽然多变量协方差分析模型是用于推断轨迹相似性的相关统计/数学工具,但如果想要通过过滤组间变异性来单独观察和解释形态变形,就需要一种特定的工具,即平行传输。在个体发育轨迹的背景下,首先应该在形状和大小之间进行单独的多变量回归,使用回归预测来估计相对于最小个体的组内变形。然后将这些变形应用于一个共同的参考(每组最小个体的平均值)。可以通过使用复杂的联络度量在黎曼流形上进行变形估计。然而,通过普通普罗克汝斯分析在欧几里得空间中估计变形可以有效地实现平行传输。这种方法在比较在早期发育阶段呈现出大形态差异的物种的个体发育轨迹时被证明非常有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验