Bruhn Dennis S, Lomholt Michael A, Khandelia Himanshu
MEMPHYS - Center for Biomembrane Physics, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark.
J Phys Chem B. 2016 Jun 2;120(21):4812-7. doi: 10.1021/acs.jpcb.6b03439. Epub 2016 May 23.
Cellular membranes mediate vital cellular processes by being subject to curvature and transmembrane electrical potentials. Here we build upon the existing theory for flexoelectricity in liquid crystals to quantify the coupling between lipid bilayer curvature and membrane potentials. Using molecular dynamics simulations, we show that headgroup dipole moments, the lateral pressure profile across the bilayer, and spontaneous curvature all systematically change with increasing membrane potentials. In particular, there is a linear dependence between the bending moment (the product of bending rigidity and spontaneous curvature) and the applied membrane potentials. We show that biologically relevant membrane potentials can induce biologically relevant curvatures corresponding to radii of around 500 nm. The implications of flexoelectricity in lipid bilayers are thus likely to be of considerable consequence both in biology and in model lipid bilayer systems.
细胞膜通过承受曲率和跨膜电势来介导重要的细胞过程。在此,我们基于液晶中挠曲电的现有理论,对脂质双层曲率与膜电势之间的耦合进行量化。通过分子动力学模拟,我们表明头部基团偶极矩、跨双层的横向压力分布以及自发曲率都随着膜电势的增加而系统地变化。特别是,弯曲力矩(弯曲刚度与自发曲率的乘积)与施加的膜电势之间存在线性关系。我们表明,生物学上相关的膜电势可诱导出对应于约500纳米半径的生物学上相关的曲率。因此,脂质双层中挠曲电的影响在生物学和模型脂质双层系统中可能都具有相当重要的意义。