IEEE Trans Pattern Anal Mach Intell. 2017 May;39(5):833-850. doi: 10.1109/TPAMI.2016.2562622. Epub 2016 May 4.
Shape-from-Template (SfT) reconstructs the shape of a deforming surface from a single image, a 3D template and a deformation prior. For isometric deformations, this is a well-posed problem. However, previous methods which require no initialization break down when the perspective effects are small, which happens when the object is small or viewed from larger distances. That is, they do not handle all projection geometries. We propose stable SfT methods that accurately reconstruct the 3D shape for all projection geometries. We follow the existing approach of using first-order differential constraints and obtain local analytical solutions for depth and the first-order quantities: the depth-gradient or the surface normal. Previous methods use the depth solution directly to obtain the 3D shape. We prove that the depth solution is unstable when the projection geometry tends to affine, while the solution for the first-order quantities remain stable for all projection geometries. We therefore propose to solve SfT by first estimating the first-order quantities (either depth-gradient or surface normal) and integrating them to obtain shape. We validate our approach with extensive synthetic and real-world experiments and obtain significantly more accurate results compared to previous initialization-free methods. Our approach does not require any optimization, which makes it very fast.
从模板中重建形状(SfT)是指根据单张图像、3D 模板和变形先验来重建变形表面的形状。对于等距变形,这是一个良好定义的问题。然而,之前的方法不需要初始化,但当视角效果较小时,即当物体较小时或从较大的距离观察时,就会失效。也就是说,它们不能处理所有的投影几何形状。我们提出了稳定的 SfT 方法,能够准确地重建所有投影几何形状的 3D 形状。我们遵循现有的使用一阶微分约束的方法,并获得深度和一阶量(深度梯度或表面法向量)的局部解析解。之前的方法直接使用深度解来获得 3D 形状。我们证明了当投影几何形状趋于仿射时,深度解是不稳定的,而对于所有的投影几何形状,一阶量的解仍然是稳定的。因此,我们提出首先估计一阶量(深度梯度或表面法向量),并对其进行积分以获得形状。我们通过广泛的合成和真实世界的实验验证了我们的方法,并与之前的无初始化方法相比,获得了更准确的结果。我们的方法不需要任何优化,因此非常快速。