Suppr超能文献

利用黎曼几何在线性时间内求解等距非刚性运动形状。

Isometric Non-Rigid Shape-from-Motion with Riemannian Geometry Solved in Linear Time.

作者信息

Parashar Shaifali, Pizarro Daniel, Bartoli Adrien

出版信息

IEEE Trans Pattern Anal Mach Intell. 2018 Oct;40(10):2442-2454. doi: 10.1109/TPAMI.2017.2760301. Epub 2017 Oct 6.

Abstract

We study Isometric Non-Rigid Shape-from-Motion (Iso-NRSfM): given multiple intrinsically calibrated monocular images, we want to reconstruct the time-varying 3D shape of a thin-shell object undergoing isometric deformations. We show that Iso-NRSfM is solvable from local warps, the inter-image geometric transformations. We propose a new theoretical framework based on the Riemmanian manifold to represent the unknown 3D surfaces as embeddings of the camera's retinal plane. This allows us to use the manifold's metric tensor and Christoffel Symbol (CS) fields. These are expressed in terms of the first and second order derivatives of the inverse-depth of the 3D surfaces, which are the unknowns for Iso-NRSfM. We prove that the metric tensor and the CS are related across images by simple rules depending only on the warps. This forms a set of important theoretical results. We show that current solvers cannot solve for the first and second order derivatives of the inverse-depth simultaneously. We thus propose an iterative solution in two steps. 1) We solve for the first order derivatives assuming that the second order derivatives are known. We initialise the second order derivatives to zero, which is an infinitesimal planarity assumption. We derive a system of two cubics in two variables for each image pair. The sum-of-squares of these polynomials is independent of the number of images and can be solved globally, forming a well-posed problem for $N\geq 3$ images. 2) We solve for the second order derivatives by initialising the first order derivatives from the previous step. We solve a linear system of $4N-4$ equations in three variables. We iterate until the first order derivatives converge. The solution for the first order derivatives gives the surfaces' normal fields which we integrate to recover the 3D surfaces. The proposed method outperforms existing work in terms of accuracy and computation cost on synthetic and real datasets.

摘要

我们研究等距非刚性运动形状恢复(Iso-NRSfM):给定多个内部校准的单目图像,我们希望重建一个经历等距变形的薄壳物体随时间变化的三维形状。我们表明,Iso-NRSfM可从局部扭曲(即图像间的几何变换)求解。我们提出了一个基于黎曼流形的新理论框架,将未知的三维表面表示为相机视网膜平面的嵌入。这使我们能够使用流形的度量张量和克里斯托费尔符号(CS)场。这些是根据三维表面逆深度的一阶和二阶导数表示的,而逆深度是Iso-NRSfM的未知数。我们证明,度量张量和CS通过仅取决于扭曲的简单规则在图像间相关。这形成了一组重要的理论结果。我们表明,当前的求解器不能同时求解逆深度的一阶和二阶导数。因此,我们提出了一个两步迭代解。1) 假设二阶导数已知,我们求解一阶导数。我们将二阶导数初始化为零,这是一个无穷小平面假设。对于每对图像,我们导出一个二元二次方程组。这些多项式的平方和与图像数量无关,可以全局求解,对于$N\geq3$幅图像形成一个适定问题。2) 我们通过用上一步的一阶导数初始化来求解二阶导数。我们求解一个三元$4N - 4$方程的线性系统。我们迭代直到一阶导数收敛。一阶导数的解给出了表面的法向量场,我们对其进行积分以恢复三维表面。在合成数据集和真实数据集上,所提出的方法在准确性和计算成本方面优于现有工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验