Ganesan Sai J, Xu Hongcheng, Matysiak Silvina
Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.
Phys Chem Chem Phys. 2016 Jul 21;18(27):17836-50. doi: 10.1039/c5cp07669b. Epub 2016 May 11.
Membrane interfaces (mIFs) are ubiquitous components of living cells and are host to many essential biological processes. One key characteristic of mIFs is the dielectric gradient and, subsequently, electrostatic potential that arises from dipolar interactions in the head group region. In this work, we present a coarse-grained (CG) model for anionic and zwitterionic lipids that accounts for dipolar intricacies in the head group region. Prior work on adding dipolar interactions in a coarse grained (CG) model for peptides enabled us to achieve a/b secondary structure content de novo, without any added bias. We have now extended this idea to lipids. To mimic dipolar interactions, two dummy particles with opposite charges are added to CG polar beads. These two dummy charges represent a fluctuating dipole that introduces structural polarization into the head group region. We have used POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine) as our model lipids. We characterize structural, dynamic, and dielectric properties of our CG bilayer, along with the effect of monovalent ions. We observe head group dipoles to play a significant role in membrane dielectric gradient and lipid clustering induced by dipole–dipole interactions in POPS lipids. In addition, we have studied membrane-induced peptide folding of a cationic antimicrobial peptide with anticancer activity, SVS-1. We find that membrane-induced peptide folding is driven by both (a) cooperativity in peptide self-interaction and (b) cooperativity in membrane–peptide interaction. In particular, dipolar interactions between the peptide backbone and lipid head groups contribute to stabilizing folded conformations [corrected].
膜界面(mIFs)是活细胞中普遍存在的成分,是许多重要生物过程的发生场所。mIFs的一个关键特征是介电梯度,以及随后由头部基团区域的偶极相互作用产生的静电势。在这项工作中,我们提出了一种用于阴离子和两性离子脂质的粗粒度(CG)模型,该模型考虑了头部基团区域的偶极复杂性。先前在肽的粗粒度(CG)模型中添加偶极相互作用的工作使我们能够从头实现α/β二级结构含量,而无需任何额外的偏差。我们现在将这个想法扩展到脂质。为了模拟偶极相互作用,在CG极性珠子上添加了两个带相反电荷的虚拟粒子。这两个虚拟电荷代表一个波动的偶极,它将结构极化引入头部基团区域。我们使用1-棕榈酰-2-油酰基-sn-甘油-3-磷酸胆碱(POPC)和1-棕榈酰-2-油酰基-sn-甘油-3-磷酸-L-丝氨酸(POPS)作为我们的模型脂质。我们表征了CG双层膜的结构、动力学和介电性质,以及单价离子的影响。我们观察到头部基团偶极在POPS脂质中由偶极-偶极相互作用诱导的膜介电梯度和脂质聚集方面发挥了重要作用。此外,我们研究了具有抗癌活性的阳离子抗菌肽SVS-1的膜诱导肽折叠。我们发现膜诱导肽折叠是由(a)肽自相互作用中的协同性和(b)膜-肽相互作用中的协同性共同驱动的。特别是,肽主链与脂质头部基团之间的偶极相互作用有助于稳定折叠构象[已修正]。