Suppr超能文献

“原始竞争”:双眼大脑如何识别光泽。

'Proto-rivalry': how the binocular brain identifies gloss.

作者信息

Muryy Alexander A, Fleming Roland W, Welchman Andrew E

机构信息

School of Psychology, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK.

Department of Psychology, University of Gießen, Otto-Behaghel-Strasse 10/F, Gießen 35394, Germany

出版信息

Proc Biol Sci. 2016 May 11;283(1830). doi: 10.1098/rspb.2016.0383.

Abstract

Visually identifying glossy surfaces can be crucial for survival (e.g. ice patches on a road), yet estimating gloss is computationally challenging for both human and machine vision. Here, we demonstrate that human gloss perception exploits some surprisingly simple binocular fusion signals, which are likely available early in the visual cortex. In particular, we show that the unusual disparity gradients and vertical offsets produced by reflections create distinctive 'proto-rivalrous' (barely fusible) image regions that are a critical indicator of gloss. We find that manipulating the gradients and vertical components of binocular disparities yields predictable changes in material appearance. Removing or occluding proto-rivalrous signals makes surfaces look matte, while artificially adding such signals to images makes them appear glossy. This suggests that the human visual system has internalized the idiosyncratic binocular fusion characteristics of glossy surfaces, providing a straightforward means of estimating surface attributes using low-level image signals.

摘要

视觉上识别光滑表面对生存可能至关重要(例如道路上的结冰区域),然而估计光泽度对人类和机器视觉来说在计算上都具有挑战性。在这里,我们证明人类的光泽感知利用了一些惊人简单的双眼融合信号,这些信号可能在视觉皮层早期就已可用。特别是,我们表明由反射产生的不寻常视差梯度和垂直偏移会创建独特的“原竞争”(几乎不可融合)图像区域,这是光泽的关键指标。我们发现操纵双眼视差的梯度和垂直分量会导致材料外观产生可预测的变化。去除或遮挡原竞争信号会使表面看起来无光泽,而在图像中人为添加此类信号会使它们显得有光泽。这表明人类视觉系统已经内化了光滑表面独特的双眼融合特征,提供了一种使用低级图像信号估计表面属性的直接方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d340/4874713/c501ca685fad/rspb20160383-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验