Hess Jon E, Zendt Joseph S, Matala Amanda R, Narum Shawn R
Columbia River Inter-Tribal Fish Commission, 3059-F National Fish Hatchery Road, Hagerman, ID 83332, USA
Yakama Nation Fisheries Program, Yakima/Klickitat Fisheries Project, PO Box 151, Toppenish, WA 98948, USA.
Proc Biol Sci. 2016 May 11;283(1830). doi: 10.1098/rspb.2015.3064.
Migration traits are presumed to be complex and to involve interaction among multiple genes. We used both univariate analyses and a multivariate random forest (RF) machine learning algorithm to conduct association mapping of 15 239 single nucleotide polymorphisms (SNPs) for adult migration-timing phenotype in steelhead (Oncorhynchus mykiss). Our study focused on a model natural population of steelhead that exhibits two distinct migration-timing life histories with high levels of admixture in nature. Neutral divergence was limited between fish exhibiting summer- and winter-run migration owing to high levels of interbreeding, but a univariate mixed linear model found three SNPs from a major effect gene to be significantly associated with migration timing (p < 0.000005) that explained 46% of trait variation. Alignment to the annotated Salmo salar genome provided evidence that all three SNPs localize within a 46 kb region overlapping GREB1-like (an oestrogen target gene) on chromosome Ssa03. Additionally, multivariate analyses with RF identified that these three SNPs plus 15 additional SNPs explained up to 60% of trait variation. These candidate SNPs may provide the ability to predict adult migration timing of steelhead to facilitate conservation management of this species, and this study demonstrates the benefit of multivariate analyses for association studies.
洄游特征被认为是复杂的,涉及多个基因之间的相互作用。我们使用单变量分析和多变量随机森林(RF)机器学习算法,对虹鳟(Oncorhynchus mykiss)成年洄游时间表型的15239个单核苷酸多态性(SNP)进行关联作图。我们的研究聚焦于一个虹鳟的典型自然种群,该种群在自然环境中表现出两种不同的洄游时间生活史且具有高度混合性。由于高水平的杂交,表现出夏季和冬季洄游的鱼类之间的中性分化有限,但单变量混合线性模型发现来自一个主效基因的三个SNP与洄游时间显著相关(p < 0.000005),解释了46%的性状变异。与注释的大西洋鲑基因组比对提供了证据,表明所有三个SNP都位于Ssa03染色体上与GREB1样基因(一种雌激素靶基因)重叠的46 kb区域内。此外,使用RF的多变量分析确定,这三个SNP加上另外15个SNP解释了高达60%的性状变异。这些候选SNP可能提供预测虹鳟成年洄游时间的能力,以促进该物种的保护管理,并且本研究证明了多变量分析在关联研究中的益处。