Suppr超能文献

如何给花朵上色:论花朵着色的光学原理。

How to colour a flower: on the optical principles of flower coloration.

作者信息

van der Kooi Casper J, Elzenga J Theo M, Staal Marten, Stavenga Doekele G

机构信息

Department of Computational Physics, University of Groningen, Groningen, The Netherlands Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland

Department of Plant Ecophysiology, University of Groningen, Groningen, The Netherlands.

出版信息

Proc Biol Sci. 2016 May 11;283(1830). doi: 10.1098/rspb.2016.0429.

Abstract

The coloration of flowers is due to the wavelength-selective absorption by pigments of light backscattered by structures inside the petals. We investigated the optical properties of flowers using (micro)spectrophotometry and anatomical methods. To assess the contribution of different structures to the overall visual signal of flowers, we used an optical model, where a petal is considered as a stack of differently pigmented and structured layers and we interpreted the visual signals of the model petals with insect vision models. We show that the reflectance depends, in addition to the pigmentation, on the petal's thickness and the inhomogeneity of its interior. We find large between-species differences in floral pigments, pigment concentration and localization, as well as floral interior structure. The fractions of reflected and transmitted light are remarkably similar between the studied species, suggesting common selective pressures of pollinator visual systems. Our optical model highlights that pigment localization crucially determines the efficiency of pigmentary filtering and thereby the chromatic contrast and saturation of the visual signal. The strongest visual signal occurs with deposition of pigments only on the side of viewing. Our systematic approach and optical modelling open new perspectives on the virtues of flower colour.

摘要

花朵的颜色是由于花瓣内部结构对光的后向散射被色素进行波长选择性吸收所致。我们使用(显微)分光光度法和解剖学方法研究了花朵的光学特性。为了评估不同结构对花朵整体视觉信号的贡献,我们使用了一个光学模型,其中将花瓣视为由不同色素沉着和结构的层组成的堆叠,并使用昆虫视觉模型解释模型花瓣的视觉信号。我们表明,除色素沉着外,反射率还取决于花瓣的厚度及其内部的不均匀性。我们发现不同物种之间在花色素、色素浓度和定位以及花内部结构方面存在很大差异。在所研究的物种之间,反射光和透射光的比例非常相似,这表明传粉者视觉系统存在共同的选择压力。我们的光学模型强调,色素定位至关重要地决定了色素过滤的效率,从而决定了视觉信号的色差和饱和度。仅在观察侧沉积色素时会出现最强的视觉信号。我们的系统方法和光学建模为花朵颜色的优点开辟了新的视角。

相似文献

1
How to colour a flower: on the optical principles of flower coloration.
Proc Biol Sci. 2016 May 11;283(1830). doi: 10.1098/rspb.2016.0429.
2
Iridescent flowers? Contribution of surface structures to optical signaling.
New Phytol. 2014 Jul;203(2):667-673. doi: 10.1111/nph.12808. Epub 2014 Apr 9.
3
Functional optics of glossy buttercup flowers.
J R Soc Interface. 2017 Feb;14(127). doi: 10.1098/rsif.2016.0933.
4
Bees, birds and yellow flowers: pollinator-dependent convergent evolution of UV patterns.
Plant Biol (Stuttg). 2016 Jan;18(1):46-55. doi: 10.1111/plb.12322. Epub 2015 Mar 17.
5
Coloration of the Chilean Bellflower, Nolana paradoxa, interpreted with a scattering and absorbing layer stack model.
Planta. 2016 Jan;243(1):171-81. doi: 10.1007/s00425-015-2395-0. Epub 2015 Sep 14.
6
Functional significance of the optical properties of flowers for visual signalling.
Ann Bot. 2019 Jan 23;123(2):263-276. doi: 10.1093/aob/mcy119.
7
Structure-based color of natural petals discriminated by polymer replication.
ACS Appl Mater Interfaces. 2011 Jan;3(1):30-4. doi: 10.1021/am1007968. Epub 2010 Nov 16.
9
Bees' subtle colour preferences: how bees respond to small changes in pigment concentration.
Naturwissenschaften. 2013 Jul;100(7):633-43. doi: 10.1007/s00114-013-1060-3. Epub 2013 May 31.
10
Botany: floral fluorescence effect.
Nature. 2005 Sep 15;437(7057):334. doi: 10.1038/437334a.

引用本文的文献

1
Hidden white and black feather layers enhance plumage coloration in tanagers and other songbirds.
Sci Adv. 2025 Jul 25;11(30):eadw5857. doi: 10.1126/sciadv.adw5857. Epub 2025 Jul 23.
2
Transcontinental patterns in floral pigment abundance among animal-pollinated species.
Sci Rep. 2025 May 7;15(1):15927. doi: 10.1038/s41598-025-94709-4.
3
Flower colour contrast, 'spectral purity' and a red herring.
Plant Biol (Stuttg). 2025 Mar;27(2):189-194. doi: 10.1111/plb.13767. Epub 2025 Jan 27.
5
High diversity of arthropod colour vision: from genes to ecology.
Philos Trans R Soc Lond B Biol Sci. 2022 Oct 24;377(1862):20210273. doi: 10.1098/rstb.2021.0273. Epub 2022 Sep 5.
6
The role of colour patterns for the recognition of flowers by bees.
Philos Trans R Soc Lond B Biol Sci. 2022 Oct 24;377(1862):20210284. doi: 10.1098/rstb.2021.0284. Epub 2022 Sep 5.
8
Classification and Association Analysis of Gerbera () Flower Color Traits.
Front Plant Sci. 2022 Jan 25;12:779288. doi: 10.3389/fpls.2021.779288. eCollection 2021.
10
Flower Color Evolution and the Evidence of Pollinator-Mediated Selection.
Front Plant Sci. 2021 Jul 26;12:617851. doi: 10.3389/fpls.2021.617851. eCollection 2021.

本文引用的文献

1
More than colour attraction: behavioural functions of flower patterns.
Curr Opin Insect Sci. 2015 Dec;12:64-70. doi: 10.1016/j.cois.2015.09.005.
2
Coloration of the Chilean Bellflower, Nolana paradoxa, interpreted with a scattering and absorbing layer stack model.
Planta. 2016 Jan;243(1):171-81. doi: 10.1007/s00425-015-2395-0. Epub 2015 Sep 14.
3
An integrative framework for the appraisal of coloration in nature.
Am Nat. 2015 Jun;185(6):705-24. doi: 10.1086/681021. Epub 2015 Apr 16.
4
Competition for pollinators and intra-communal spectral dissimilarity of flowers.
Plant Biol (Stuttg). 2016 Jan;18(1):56-62. doi: 10.1111/plb.12328. Epub 2015 Apr 16.
5
Bees, birds and yellow flowers: pollinator-dependent convergent evolution of UV patterns.
Plant Biol (Stuttg). 2016 Jan;18(1):46-55. doi: 10.1111/plb.12322. Epub 2015 Mar 17.
6
Is floral iridescence a biologically relevant cue in plant-pollinator signaling?
New Phytol. 2015 Jan;205(1):18-20. doi: 10.1111/nph.13066. Epub 2014 Sep 22.
7
Mechanisms, functions and ecology of colour vision in the honeybee.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014 Jun;200(6):411-33. doi: 10.1007/s00359-014-0915-1. Epub 2014 May 15.
8
Iridescent flowers? Contribution of surface structures to optical signaling.
New Phytol. 2014 Jul;203(2):667-673. doi: 10.1111/nph.12808. Epub 2014 Apr 9.
9
Bumblebees (Bombus terrestris) and honeybees (Apis mellifera) prefer similar colours of higher spectral purity over trained colours.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 Mar;199(3):197-210. doi: 10.1007/s00359-012-0783-5. Epub 2012 Dec 9.
10
Parallel evolution of angiosperm colour signals: common evolutionary pressures linked to hymenopteran vision.
Proc Biol Sci. 2012 Sep 7;279(1742):3606-15. doi: 10.1098/rspb.2012.0827. Epub 2012 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验