Suppr超能文献

链霉菌的自身抗性,特别涉及β-内酰胺抗生素

Self-resistance in Streptomyces, with Special Reference to β-Lactam Antibiotics.

作者信息

Ogawara Hiroshi

机构信息

HO Bio Institute, 33-9, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.

Department of Biochemistry, Meiji Pharmaceutical University, 522-1, Noshio-2, Kiyose, Tokyo 204-8588, Japan.

出版信息

Molecules. 2016 May 10;21(5):605. doi: 10.3390/molecules21050605.

Abstract

Antibiotic resistance is one of the most serious public health problems. Among bacterial resistance, β-lactam antibiotic resistance is the most prevailing and threatening area. Antibiotic resistance is thought to originate in antibiotic-producing bacteria such as Streptomyces. In this review, β-lactamases and penicillin-binding proteins (PBPs) in Streptomyces are explored mainly by phylogenetic analyses from the viewpoint of self-resistance. Although PBPs are more important than β-lactamases in self-resistance, phylogenetically diverse β-lactamases exist in Streptomyces. While class A β-lactamases are mostly detected in their enzyme activity, over two to five times more classes B and C β-lactamase genes are identified at the whole genomic level. These genes can subsequently be transferred to pathogenic bacteria. As for PBPs, two pairs of low affinity PBPs protect Streptomyces from the attack of self-producing and other environmental β-lactam antibiotics. PBPs with PASTA domains are detectable only in class A PBPs in Actinobacteria with the exception of Streptomyces. None of the Streptomyces has PBPs with PASTA domains. However, one of class B PBPs without PASTA domain and a serine/threonine protein kinase with four PASTA domains are located in adjacent positions in most Streptomyces. These class B type PBPs are involved in the spore wall synthesizing complex and probably in self-resistance. Lastly, this paper emphasizes that the resistance mechanisms in Streptomyces are very hard to deal with, despite great efforts in finding new antibiotics.

摘要

抗生素耐药性是最严重的公共卫生问题之一。在细菌耐药性中,β-内酰胺类抗生素耐药性是最普遍且最具威胁的领域。抗生素耐药性被认为起源于产抗生素的细菌,如链霉菌属。在本综述中,主要从自我耐药性的角度通过系统发育分析来探究链霉菌属中的β-内酰胺酶和青霉素结合蛋白(PBPs)。尽管在自我耐药性方面PBPs比β-内酰胺酶更重要,但链霉菌属中存在系统发育多样的β-内酰胺酶。虽然A类β-内酰胺酶大多通过其酶活性检测到,但在全基因组水平上鉴定出的B类和C类β-内酰胺酶基因数量是其两倍到五倍多。这些基因随后可转移至病原菌。至于PBPs,两对低亲和力PBPs可保护链霉菌属免受自身产生的和其他环境β-内酰胺抗生素的攻击。除链霉菌属外,具有PASTA结构域的PBPs仅在放线菌的A类PBPs中可检测到。链霉菌属均不具有带有PASTA结构域的PBPs。然而,在大多数链霉菌属中,一个没有PASTA结构域的B类PBPs和一个带有四个PASTA结构域的丝氨酸/苏氨酸蛋白激酶位于相邻位置。这些B类PBPs参与孢子壁合成复合体,可能也参与自我耐药性。最后,本文强调,尽管在寻找新抗生素方面付出了巨大努力,但链霉菌属中的耐药机制仍极难应对。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/838e/6273383/fc34837f9b67/molecules-21-00605-g001.jpg

相似文献

1
Self-resistance in Streptomyces, with Special Reference to β-Lactam Antibiotics.
Molecules. 2016 May 10;21(5):605. doi: 10.3390/molecules21050605.
2
Penicillin-binding proteins in Actinobacteria.
J Antibiot (Tokyo). 2015 Apr;68(4):223-45. doi: 10.1038/ja.2014.148. Epub 2014 Oct 29.
4
Cytoplasmic-membrane anchoring of a class A beta-lactamase and its capacity in manifesting antibiotic resistance.
Antimicrob Agents Chemother. 2007 Aug;51(8):2937-42. doi: 10.1128/AAC.00011-07. Epub 2007 May 14.
6
Molecular docking and molecular dynamics studies on β-lactamases and penicillin binding proteins.
Mol Biosyst. 2014 Apr;10(4):891-900. doi: 10.1039/c3mb70537d. Epub 2014 Feb 6.
8
Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria.
J Antibiot (Tokyo). 2016 Sep;69(9):660-85. doi: 10.1038/ja.2015.138. Epub 2016 Jan 13.
9
The structures of penicillin-binding protein 4 (PBP4) and PBP5 from provide structural insights into β-lactam resistance.
J Biol Chem. 2018 Nov 30;293(48):18574-18584. doi: 10.1074/jbc.RA118.006052. Epub 2018 Oct 24.
10
Rational antibiotic design: in silico structural comparison of the functional cavities of penicillin-binding proteins and ß-lactamases.
J Biomol Struct Dyn. 2019 Jan;37(1):65-74. doi: 10.1080/07391102.2017.1418678. Epub 2018 Jan 17.

引用本文的文献

1
Microbiome profiling and Actinomycetes isolation from tropical marine sponges.
AIMS Microbiol. 2025 Mar 3;11(1):182-205. doi: 10.3934/microbiol.2025010. eCollection 2025.
3
Genomic Exploration of a Chitinolytic PMB5 Strain from European mantis ().
Curr Issues Mol Biol. 2024 Aug 24;46(9):9359-9375. doi: 10.3390/cimb46090554.
5
OrthoRefine: automated enhancement of prior ortholog identification via synteny.
BMC Bioinformatics. 2024 Apr 25;25(1):163. doi: 10.1186/s12859-024-05786-7.
7
Single-cell RNA-Seq reveals intracellular microbial diversity within immune cells during SARS-CoV-2 infection and recovery.
iScience. 2023 Oct 30;26(11):108357. doi: 10.1016/j.isci.2023.108357. eCollection 2023 Nov 17.
10
Metagenomic survey of the microbiome of ancient Siberian permafrost and modern Kamchatkan cryosols.
Microlife. 2022 Apr 7;3:uqac003. doi: 10.1093/femsml/uqac003. eCollection 2022.

本文引用的文献

1
One ring to rule them all: Current trends in combating bacterial resistance to the β-lactams.
Protein Sci. 2016 Apr;25(4):787-803. doi: 10.1002/pro.2889. Epub 2016 Mar 9.
2
The Chemical Biology of Human Metallo-β-Lactamase Fold Proteins.
Trends Biochem Sci. 2016 Apr;41(4):338-355. doi: 10.1016/j.tibs.2015.12.007. Epub 2016 Jan 21.
3
Antibiotics and the Human Gut Microbiome: Dysbioses and Accumulation of Resistances.
Front Microbiol. 2016 Jan 12;6:1543. doi: 10.3389/fmicb.2015.01543. eCollection 2015.
4
Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria.
J Antibiot (Tokyo). 2016 Sep;69(9):660-85. doi: 10.1038/ja.2015.138. Epub 2016 Jan 13.
5
Natural product discovery: past, present, and future.
J Ind Microbiol Biotechnol. 2016 Mar;43(2-3):155-76. doi: 10.1007/s10295-015-1723-5. Epub 2016 Jan 6.
6
Characterization of a novel esterase Rv1497 of Mycobacterium tuberculosisH37Rv demonstrating β-lactamase activity.
Enzyme Microb Technol. 2016 Jan;82:180-190. doi: 10.1016/j.enzmictec.2015.10.007. Epub 2015 Oct 21.
7
Taxonomy, Physiology, and Natural Products of Actinobacteria.
Microbiol Mol Biol Rev. 2015 Nov 25;80(1):1-43. doi: 10.1128/MMBR.00019-15. Print 2016 Mar.
8
Role of eukaryotic-like serine/threonine kinases in bacterial cell division and morphogenesis.
FEMS Microbiol Rev. 2016 Jan;40(1):41-56. doi: 10.1093/femsre/fuv041. Epub 2015 Sep 30.
9
Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes.
J Ind Microbiol Biotechnol. 2016 Mar;43(2-3):343-70. doi: 10.1007/s10295-015-1682-x. Epub 2015 Sep 12.
10
Characterizations of Two Bacterial Persulfide Dioxygenases of the Metallo-β-lactamase Superfamily.
J Biol Chem. 2015 Jul 31;290(31):18914-23. doi: 10.1074/jbc.M115.652537. Epub 2015 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验