Suppr超能文献

产β-内酰胺抗生素放线菌中的青霉素结合蛋白、β-内酰胺酶和β-内酰胺酶抑制剂:自身耐药机制。

Penicillin-Binding Proteins, β-Lactamases, and β-Lactamase Inhibitors in β-Lactam-Producing Actinobacteria: Self-Resistance Mechanisms.

机构信息

Departamento de Biología Molecular, Universidad de León, 24071 León, Spain.

出版信息

Int J Mol Sci. 2022 May 18;23(10):5662. doi: 10.3390/ijms23105662.

Abstract

The human society faces a serious problem due to the widespread resistance to antibiotics in clinical practice. Most antibiotic biosynthesis gene clusters in actinobacteria contain genes for intrinsic self-resistance to the produced antibiotics, and it has been proposed that the antibiotic resistance genes in pathogenic bacteria originated in antibiotic-producing microorganisms. The model actinobacteria produces the β-lactam antibiotic cephamycin C, a class A β-lactamase, and the β lactamases inhibitor clavulanic acid, all of which are encoded in a gene supercluster; in addition, it synthesizes the β-lactamase inhibitory protein BLIP. The secreted clavulanic acid has a synergistic effect with the cephamycin produced by the same strain in the fight against competing microorganisms in its natural habitat. High levels of resistance to cephamycin/cephalosporin in actinobacteria are due to the presence (in their β-lactam clusters) of genes encoding PBPs which bind penicillins but not cephalosporins. We have revised the previously reported cephamycin C and clavulanic acid gene clusters and, in addition, we have searched for novel β-lactam gene clusters in protein databases. Notably, in and , the β-lactamases are retained in the cell wall and do not affect the intracellular formation of isopenicillin N/penicillin N. The activity of the β-lactamase in may be modulated by the β-lactamase inhibitory protein BLIP at the cell-wall level. Analysis of the β-lactam cluster in actinobacteria suggests that these clusters have been moved by horizontal gene transfer between different actinobacteria and have culminated in with the organization of an elaborated set of genes designed for fine tuning of antibiotic resistance and cell wall remodeling for the survival of this species. This article is focused specifically on the enigmatic connection between β-lactam biosynthesis and β-lactam resistance mechanisms in the producer actinobacteria.

摘要

人类社会面临着一个严重的问题,即临床实践中抗生素的广泛耐药性。大多数放线菌中的抗生素生物合成基因簇都包含对所产生抗生素的内在自我抗性基因,并且有人提出,致病菌中的抗生素抗性基因起源于产生抗生素的微生物。模式放线菌 产生β-内酰胺抗生素头孢菌素 C、一种 A 类β-内酰胺酶和β-内酰胺酶抑制剂克拉维酸,所有这些都编码在一个基因超簇中;此外,它还合成β-内酰胺酶抑制蛋白 BLIP。分泌的克拉维酸与同一菌株产生的头孢菌素 C 在其天然栖息地中对抗竞争微生物具有协同作用。放线菌对头孢菌素/头孢菌素的高水平耐药性是由于存在(在其β-内酰胺簇中)编码与青霉素结合但不与头孢菌素结合的 PBPs 的基因。我们已经修订了先前报道的头孢菌素 C 和克拉维酸基因簇,此外,我们还在蛋白质数据库中搜索了新的β-内酰胺基因簇。值得注意的是,在 和 中,β-内酰胺酶保留在细胞壁中,不会影响细胞内异青霉素 N/青霉素 N 的形成。 在 中,β-内酰胺酶的活性可能在细胞壁水平上被β-内酰胺酶抑制蛋白 BLIP 调节。对放线菌中β-内酰胺簇的分析表明,这些簇已经通过不同放线菌之间的水平基因转移转移,最终在 中形成了一套精心设计的基因,用于微调抗生素耐药性和细胞壁重塑,以适应该 物种的生存。本文特别关注β-内酰胺生物合成与产生抗生素的放线菌中β-内酰胺耐药机制之间的神秘联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0016/9146315/a52fca561bef/ijms-23-05662-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验