Wu Hao, Chen Shuxin, Yang Binfeng, Chen Kun
Information and Navigation College Air Force Engineering University, Fenghao east road No.1, Xi'an 710077, China.
Sensors (Basel). 2016 May 9;16(5):629. doi: 10.3390/s16050629.
The direction of arrival (DOA) tracking problem based on an angle sensor is an important topic in many fields. In this paper, a nonlinear filter named the feedback M-estimation based robust cubature Kalman filter (FMR-CKF) is proposed to deal with measurement outliers from the angle sensor. The filter designs a new equivalent weight function with the Mahalanobis distance to combine the cubature Kalman filter (CKF) with the M-estimation method. Moreover, by embedding a feedback strategy which consists of a splitting and merging procedure, the proper sub-filter (the standard CKF or the robust CKF) can be chosen in each time index. Hence, the probability of the outliers' misjudgment can be reduced. Numerical experiments show that the FMR-CKF performs better than the CKF and conventional robust filters in terms of accuracy and robustness with good computational efficiency. Additionally, the filter can be extended to the nonlinear applications using other types of sensors.
基于角度传感器的到达方向(DOA)跟踪问题是许多领域中的一个重要课题。本文提出了一种名为基于反馈M估计的鲁棒容积卡尔曼滤波器(FMR-CKF)的非线性滤波器,以处理来自角度传感器的测量异常值。该滤波器利用马氏距离设计了一种新的等效权重函数,将容积卡尔曼滤波器(CKF)与M估计方法相结合。此外,通过嵌入一种由分裂和合并过程组成的反馈策略,可以在每个时间索引中选择合适的子滤波器(标准CKF或鲁棒CKF)。因此,可以降低异常值误判的概率。数值实验表明,FMR-CKF在准确性、鲁棒性和计算效率方面均优于CKF和传统的鲁棒滤波器。此外,该滤波器可以扩展到使用其他类型传感器的非线性应用中。