Suppr超能文献

使用以化学结构和生物活性信息为特征的局部有效性方法,系统地评估类推预测和性能。

Systematically evaluating read-across prediction and performance using a local validity approach characterized by chemical structure and bioactivity information.

作者信息

Shah Imran, Liu Jie, Judson Richard S, Thomas Russell S, Patlewicz Grace

机构信息

National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.

Department of Information Science, University of Arkansas at Little Rock, AR 72204, USA; Oak Ridge Institute for Science Education Fellow, National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.

出版信息

Regul Toxicol Pharmacol. 2016 Aug;79:12-24. doi: 10.1016/j.yrtph.2016.05.008. Epub 2016 May 9.

Abstract

Read-across is a popular data gap filling technique within category and analogue approaches for regulatory purposes. Acceptance of read-across remains an ongoing challenge with several efforts underway for identifying and addressing uncertainties. Here we demonstrate an algorithmic, automated approach to evaluate the utility of using in vitro bioactivity data ("bioactivity descriptors", from EPA's ToxCast program) in conjunction with chemical descriptor information to derive local validity domains (specific sets of nearest neighbors) to facilitate read-across for up to ten in vivo repeated dose toxicity study types. Over 3239 different chemical structure descriptors were generated for a set of 1778 chemicals and supplemented with the outcomes from 821 in vitro assays. The read-across prediction of toxicity for 600 chemicals with in vivo data was based on the similarity weighted endpoint outcomes of its nearest neighbors. The approach enabled a performance baseline for read-across predictions of specific study outcomes to be established. Bioactivity descriptors were often found to be more predictive of in vivo toxicity outcomes than chemical descriptors or a combination of both. This generalized read-across (GenRA) forms a first step in systemizing read-across predictions and serves as a useful component of a screening level hazard assessment for new untested chemicals.

摘要

类推法是监管目的下类别和类似物方法中一种常用的数据填补技术。类推法的接受度仍然是一个持续存在的挑战,目前正在进行多项工作以识别和解决不确定性。在此,我们展示了一种算法化的自动化方法,用于评估结合体外生物活性数据(来自美国环境保护局的ToxCast计划的“生物活性描述符”)和化学描述符信息来推导局部有效性域(特定的最近邻集),以促进多达十种体内重复剂量毒性研究类型的类推法应用。为一组1778种化学物质生成了超过3239种不同的化学结构描述符,并补充了821项体外试验的结果。对600种有体内数据的化学物质的毒性类推预测基于其最近邻的相似性加权终点结果。该方法为特定研究结果的类推预测建立了性能基线。人们经常发现生物活性描述符比化学描述符或两者的组合更能预测体内毒性结果。这种广义类推法(GenRA)是系统化类推预测的第一步,也是新的未测试化学物质筛选水平危害评估的有用组成部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验